

UK Metabolic Biochemistry Network Recommendations For The Biochemical Investigation of Fits and Seizures for Inherited Metabolic Disorders

Author(s) Robert Barski

Corresponding author: Robert Barski, robert.barski@nhs.net

Version 6

Date October 2024

Disclaimer: These are laboratory guidelines reflecting current best practice in specialist metabolic laboratories the UK. They are not evidence based but reflect expert opinion. MetBioNet cannot accept any responsibility for use of these guidelines.

Contents

Item	Page
Introduction	2
Clinical history	2
First line investigations	3
Second line investigations	3-7
References	8

Introduction

These guidelines describe the differential diagnosis of biochemical causes of severe neurological crises presenting as fits/seizures. They suggest an approach to diagnosis but do not include an exhaustive list of all possible defects. It is useful to note that fits may well be associated with febrile disorders but intercurrent illness can also provoke a metabolic crisis in affected children. This is frequently the case for disorders of fatty acid oxidation. However, it is important to appreciate that between 2 and 5% of the general population suffer from some limited form of epilepsy. Whilst there is commonly a hereditary basis, monogenic disorders together form a small subset of less than 30%. The most common group of inherited epilepsies are the channelopathies which are not further discussed in this guideline.

Clinical History

Take careful note of age at onset, prematurity or birth trauma, infections, intercurrent illness, therapy (especially chemotherapy or valproate), severity, EEG changes, family history. Specific signs and symptoms can be helpful in directing further testing e.g. a history of in utero hiccoughs can represent antenatal seizures; seizures post fasting may suggest hypoglycaemia; Zellweger syndrome presents with characteristic dysmorphic features and a number of lysosomal storage disorders present with cherry red spot on fundoscopy or vacuolated lymphocytes on a peripheral blood film. Be particularly aware of intractable seizures that are resistant to multiple antiepileptic drugs as the possibility of a metabolic disease will be high.

Seizures are a secondary phenomenon in many serious metabolic disturbances. Note particularly any evidence of hypoglycaemia, hypocalcaemia, metabolic acidosis or hyperammonaemia. If present, then follow relevant investigation protocol – see separate MetBioNet guidelines.

First Line Investigations

Table 1 details a comprehensive list of first line investigations to consider for the biochemical diagnosis of a cause of a clinical presentation of fits/seizures. These are accessible investigations which should be considered in all cases. Clinical history is important to direct priority and guide interpretation of these investigations and should be given alongside all requests for these tests.

Tab	le 1:	First	line	investi	igations	s to	consid	er

Test	Sample type* Reason	
Routine Investigation	·	
U&E, bicarbonate, anion gap	Serum/Plasma	Electrolyte imbalances
Calcium, magnesium, phosphate	Serum/Plasma	Electrolyte imbalances
Blood gases (pH)	Whole blood	Acid/base disturbance
Ammonia	Plasma	Hyperammonaemia
Glucose	Plasma. (CSE**)	Hypoglycaemia, **CSF required if
		considering GLUT1 def.
Lactate	Fluoride oxalate	Disorders of energy metabolism
		(mitochondrial disease).
Urate	Serum/Plasma	Purine/pyrimidine disorders
Conner / cerulonlasmin	Sorum/Plasma	Disorders of copper metabolism (Wilson
	Sel ullij Plasilia	/Menke disease)
Metabolic Investigations		
		Organic acidaemias
Organic acids	Urino	Mitochondrial disorders
Organic acius	Unite	Useful technique to detect disturbances
		in numerous metabolic pathways
Amino acida	Diacma/CSE	Urea cycle defects, MSUD,
Amino acids	Flashid/CSF	other primary amino acid disorders
Aculcarnitinos	Diasma/bloodspots	Organic acidaemias, fatty acid oxidation
Acylcarifines	Plasma/ bioouspots	defects
Tatal homosysteine	Diacma	Disorders of homocysteine and
Total nomocystellie	FIDSIIID	cobalamin metabolism
Biotinidase	Serum /Plasma	Biotinidase deficiency
Very long chain fatty acids	Plasma	Peroxisomal defects

*NB: check local laboratory protocols for accepted sample types

Second Line Investigations

When nothing helpful has been forthcoming from the initial tests but the symptoms persist and there is still concern about the possibility of a metabolic disorder, further investigations should be considered. Which disorders and tests should be considered depends on the clinical context and these investigations may also be indicated at the outset if there are specific clinical signs (see Table 2 below). The age at presentation is a guide only, considerable overlap is observed in practice.

Please note: The following list does not contain all the disorders that should have been detected via the first line investigations outlined above, e.g. urea cycle defects and acute organic acidurias.

Disorder	sorder Supporting Clinical Signs		Gene (s) affected			
Neonatal/early onset						
Aromatic amino acid decarboxylase	Mental retardation, movement disorders, hypotonia, recurrent hyperthermia, hypersalivation, bulbar symptoms, temperature instability.	Vanillactic acid/organic acids (U), Neurotransmitters (CSF)*	DDC			
Asparagine synthesis defects	Microcephaly, hypotonia, severe psychomotor retardation, hyperekplexia.	Amino acids (P) (NB may not be abnormal in all patients)	ASNS			
Multiple carboxylase deficiency (MCD) - Biotinidase deficiency or Holocarboxylase synthetase (HCS) deficiency	Alopecia, skin rashes, hypotonia.	Biotinidase (S), organic acids (U).	BTD; HLCS			
GLUT 1 deficiency	Slow head growth, microcephaly.	Glucose (CSF) (also ratio to plasma).	SLC2A1			
Glutamine synthesis defects	Encephalopathy, hypotonia.	Amino acids (P), Ammonia (P).	GLUL			
Glutaminase deficiency	Epileptic encephalopathy, respiratory failure, structural brain abnormalities.	Amino acids (P)	GLS			
Glutaric acidaemia type 1	Macrocephaly, dystonia.	Organic acids (U), Acylcarnitines (DBS) (P) (NB. these are not always positive & it may be necessary to assay the enzyme in cultured fibroblasts or perform mutation analysis).	GCDH			
Homocystinuria	Hypotonia, microcephaly.	Total homocysteine (P), amino acids (P)	CBS			
Isolated sulphite oxidase deficiency	Lens dislocation.	Amino acids (P)(ask specifically for sulphocysteine)	SUOX			
Lipoic acid synthetase deficiency	Hypotonia, progressive encephalopathy, apnoea.	Amino acids (P)(CSF) NB Paired sample required, lactate (P)	LIAS			

Menkes syndrome	Kinky hair, hypothermia, developmental delay.	Copper (P), caeruloplasmin (S)	АТР7А
Molybdenum cofactor deficiency	Lens dislocation.	Urate (P), Amino acids (P)(ask specifically for sulphocysteine)	MOCS1; MOCS2; GPHN
Non-ketotic hyperglycinaemia	Hypotonia, apnoea, burst suppression on EEG.	Amino acids (P) (CSF) NB Paired sample required.	GLDC; AMT; GCSH
Peroxisomal defects of β- oxidation and organelle genesis	Dysmorphism, hypotonia, liver dysfunction.	Very long chain fatty acids (VLCFA) (P)	ABCD1; ACOX1; AGPS; AGXT; AMACR; DNM1L; GNPAT; HSD17B4; PEX1; PEX2; PEX3; PEX5; PEX6; PEX7; PEX10; PEX11B; PEX12; PEX13; PEX14; PEX16; PEX19; PEX26;PHYH; SCP2
Pterin disorders	Intellectual disability, movement disorders, hypotonia, recurrent hyperthermia, hypersalivation, bulbar symptoms.	Amino acids (P), pterins (U) (B), DHPR (B), Neurotransmitters (CSF)*	GCH1; PTS; SPR; QDPR; PCBD1
Pyridoxal phosphate responsive seizures	Pyridoxine unresponsive but responds to pyridoxal phosphate.	Vanillactic acid/organic acids (U), Neurotransmitters (CSF)* Amino acids (CSF)	PNPO
Pyridoxine responsive seizures (Alpha-amino adipic semialdehyde dehydrogenase deficiency)	Responds to pyridoxine may take up to four weeks.	Alpha-amino adipic semialdehyde (α-AASA) (U). Neurotransmitters (CSF)*, Amino acids (CSF)	ALDH7A1
Pyridoxine responsive seizures due to congenital hypophosphatasia	May present with anti convulsant resistant seizures that respond well to pyridoxine before skeletal signs are apparent.	Alkaline phosphatase (ALP) (S) Amino acids (U), Amino acids (U) (ask specifically for phosphoethanolamine), PLP (pyridoxal 5'- phosphate)(P)	ALPL
Pyruvate dehydrogenase (PDH) deficiency	Leigh like picture, developmental delay, abnormal movements,	Lactate (P) (CSF),	PDP1
Serine synthesis defects 3-phosphoglycerate dehydrogenase deficiency	Microcephaly, psychomotor retardation.	Amino acids (CSF)	PHGDH Consider PSAT1; PSPH
Tyrosine hydroxylase deficiency	Oculogyric crises, movement disorders, Parkinsonian symptoms, hypotonia.	Neurotransmitters (CSF)*	ТН
γ-Aminobutyrate transaminase deficiency	Psychomotor retardation, hypotonia.	CSF GABA*	ABAT

Later infancy/early childhood – in addition to the above					
Cobalamin disorders		Total homocysteine (P), organic acids (U), amino acids (P)	MMACHC; HCFC1; C2orf25; MMAA; MTRR; MTR		
Congenital disorders of glycosylation (CDGs)	Unusual distribution of sub cutaneous fat, strokes, ataxia, atrophy of cerebellum, clotting abnormalities, dysmorphism.	Transferrin isoelectric focussing (S) (NB will not identify all CDGs)	See reference 7.		
Creatine synthesis disorders - (GAMT) Guanidinoacetate methyltransferase - (AGAT) Arginine:glycine amidinotransferase	Intellectual disability, developmental delay (particularly of speech and language), extrapyramidal symptoms (GAMT only), behavioural problems, myopathy (AGAT only)	Creatine/GAA (U)(P), brain MRS	GAMT; GATM		
Creatine transporter (SLC6A8) defect	Intellectual disability, developmental delay (particularly of speech and language), behavioural problems.	Creatine (U), brain MRS	SLC6A8		
Gaucher type 2	Hepatosplenomegaly	Chitotriosidase (P) (nonspecific), β- glucosidase (L)	GBA		
2-hydroxyglutaric aciduria (D-2OH glutaric aciduria, L-2OH glutaric aciduria and D/L-2OH glutaric aciduria	Psychomotor developmental delay (see reference 2 for further detail between types).	Organic acids (U) (NB specific chiral studies needed to differentiate between D, L and D/L forms).	D2HGDH; IDH2 (D form) L2HGDH (L form) SLC25A1 (D/L form)		
Hyperprolinaemia Type II	Primary generalised seizures of varying severity. May be associated with intellectual disability.	Amino acids (P) (U), organic acids (U)	ALDH4A1		
Neuronal Ceroid Lipofucinoses CLN 1,2 (Batten's Disease)	Visual loss, retinitis pigmentosa, dementia.	CLN1 leucocyte palmitoyl protein thioesterase (PPT) CLN2 leucocyte tripeptidyl peptidase I (TPP) (L), (B) EDTA can also be useful to look for vacuolated lymphocytes.	PPT1; TPP1 MFSD8; CLN8; CTSD; CTSF; CLN5; CLN6; CLN3; GRN; DNAJC5; CLN9		
Niemann-Pick disease type C	Hepatosplenomegaly. supranuclear, ophthalmoplegia.	Palmitoyl phosphocholineserine (PPCS) (P), filipin staining and/or cholesterol esterification (fibroblasts).	NPC1		

Lysosomal defects (other) inc: GM1 gangliosidosis, Gaucher disease, Sialidosis, GM2 gangliosidosis	Skeletal deformaties, coarse facies, intellectual disability, progressive neurological symptoms. Specific symptoms in some (e.g. cherry red macula spot (esp in sialidosis)	White cell enzyme analysis (B) – take note as to which enzymes/disorders in certain panels (seek local lab guidance). Oligosaccharide/sialic acid analysis (U)	MANBA; FUCA1; NEU1; GLB1; HEXA (not exhaustive list).
Purine and pyrimidine disorders	Psychomotor retardation, cerebellar hypoplasia, microcephaly, feeding difficulties.	Purines and pyrimidines (U) (P)	ADSL; ATIC; PRPS1; DPYD; DPYS; UPB1; DGUOK; RRM2B
Respiratory chain defects / Mitochondrial disorders	Hypotonia, ptosis. Brain stem abnormalities.	Lactate (P) (CSF) NB lactate accumulation can be confined to CNS (i.e. elevated CSF lactate), Respiratory chain enzymes/histology (muscle biopsy).	See reference 6.
Succinic semialdehyde dehydrogenase deficiency (4-OH butyric aciduria)	Dev delay, early-onset hypotonia, late-onset expressive language impairment, hyporeflexia, ataxia.	Organic acids (U)	ALDH5A1
Later childhood – in addi	tion to the above		
Acute porphyrias	Presentation usually after puberty, acute abdomen, psychosis.	PBG (U)	HMBS; PPOX; ALAD; CPOX
CLN3 (Juvenile Battens Disease)	Visual loss, retinitis pigmentosa, dementia.		CLN3
Disorders of folate metabolism		Discuss with your specialist laboratory – see metabolic assay directory.	SLC46A1; FOL1R; DHFR; MTHFR
Gaucher disease type 3	Hepatosplenomegaly, dystonia	Chitotriosidase (P) (nonspecific), β- glucosidase (L)	GBA
Lafora disease	Intellectual decline and early death.	Demonstration of storage material in tissue biopsy.	NHLRC1; EPM2A

(B) - Blood, (L) - Leucocytes, (P) - Plasma, (S) - Serum, (U) - Urine

* Before sample collection and storage refer to CSF instruction sheet from The Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London UK available from https://www.uclh.nhs.uk/our-services/find-service/neurology-and-neurosurgery/neurometabolic-unit

Further information about the availability or sample requirements for individual tests access the Metabolic Assay Directory on the MetBioNet website (www.metbio.net).

References

[1] Physician's Guide to the Diagnosis, Treatment and Follow-Up of Metabolic Diseases. N. Blau, M.Duran, K.M. Gibson and C. Dionisi-Vici Ed.s. 2014 Springer

[2] Inborn Metabolic Diseases, Diagnosis and Treatment, 7th edition. J.M. Saudubray, M R Baumgartner, Á. García-Cazorla and J.H. Walter Eds 2022 Springer

[3] Noebels JL. The Inherited Epilepsies, in The Metabolic and Molecular Bases of Inherited Disease. Ed Scriver CR et al. 8th ed. 2001 pp 5807-5832.

[4] Bernard BS and Lowenstein DH. Mechanisms of Disease; Epilepsy. NEJM 2003,349;13,1257-66.

[5] Rahman S, Footitt EJ, Varadkar S, Clayton PT. Inborn errors of metabolism causing epilepsy. Developmental Medicine & Child Neurology 2012, 55: 23-36

[6] GeneReviews[®] [Internet]. Mitochondrial Disorders Overview Pagon RA, Adam MP, Ardinger HH, et al., editors. Last Update: August 14, 2014. https://www.ncbi.nlm.nih.gov/books/NBK1224/

[7] Jaeken J, Péanne R. What is new in CDG? J Inherit Metab Dis (2017) 40:569-586. Standard format

Definitions

N/A

Review Date

October 2027