Amino acid disorders (PKU, MSUD, HT, HCU)

Biochemical monitoring of amino acids is integral to:

- manage & adjust dietary treatment
- optimise treatment and outcome
- maintain amino acid(s) in target treatment range
- prevent deficiency low amino acid concentrations
- prevent toxicity high amino acids concentrations
- manage intercurrent illnesses

Amino acid disorders (PKU, MSUD, HT, HCU)

- accumulation of precursor amino acid(s) in plasma
- measure the accumulating amino acid(s)
- normal reference ranges
- target treatment reference ranges for amino acid(s)
- target plasma reference range >normal reference range
- measurement of uncertainty (MU)
- adjust diet based on result and other factors
- families informed of result by phone, letter, e-mail, text, graph of results at clinic

Home blood sampling and collection

- blood spot on blood cards (PKU, Tyr, MSUD, HCU)
 - heel/finger prick
 - importance of good sample to obtain accurate results !
 - convenient, simple, achievable
 - enables regular, accurate monitoring of diet
- blood in Sarstedt microvette tube

Frequency of blood sampling: a guide

PKU, MSUD, HT(1,11,111)

- weekly in infancy and early childhood
- 2 weekly in toddlers, young children
- monthly in older children

HCU:

- less easy to monitor from home
- hospital phlebotomy for prompt blood separation
- dried blood spot for tHc (LC–MS/MS), methionine (Adam Gerrard, Mary Anne Preece, BCH)
- weekly in infants until stable, then 2 weekly

Sampling time of day – standardise ?

- diurnal variation of amino acids
- ideally sample at least 3½ hours after end of last meal, avoid high aa's due to postprandial absorption
 Bachmann C, J Inher Metab Dis 2008
- PKU phenylalanine is highest after overnight fast Macdonald A et al, Arch Dis Child 1997
- aim is to at least collect at same time of day eg: PKU bath time on a Sunday – warm, good blood flow
- try to document time delay between last meal & sampling

Tandem mass spectrometry (MS/MS) - blood spots for

- for PKU, Tyrosinaemia
- HCU (and paired plasma sample 1/mth)

Ultra High performance/pressure liquid chromatographyBCAA blood spot

Results

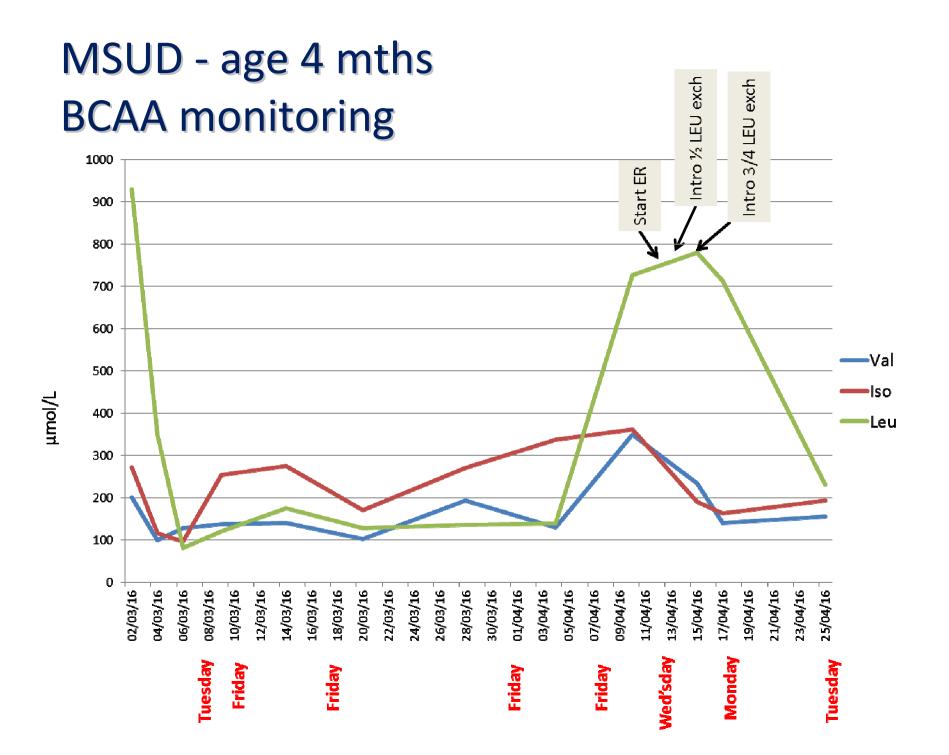
- daily phe, tyr, BCAA
- weekly tHc, methionine (BCH)

Interpretation of amino acid results

- look at trends
- adjust diet
- repeat blood test to follow up dietary change
- timing of sample in relation to food
- consider clinical status
 - is child well ?
 - is child on ER ?
- growth
- age (puberty)
- compliance with diet
- no of days since last increased exchanges/protein

Reasons for high concentrations of amino acid(s) on treatment

- acute catabolism: infection, stress, surgery
- chronic catabolism due to inadequate intake of:
 - precursor free aa's
 - energy
- too much natural protein
- wrong protein substitute product or low protein foods
- non-adherence
- medicine (Betaine in HCU)


Reasons for low concentrations of amino acids (s) on treatment

- inadequate natural protein intake
- inadequate protein substitute or single amino acids
- increased requirement post illness
- growth spurt
- inadequate synthesis and supplementation
 - cysteine HCU
 - tyrosine PKU

PKU	Treatment aim Treatment ai		
Age(years)	Phe range µmol/l MRC Arch Dis Child 1993	Phe range µmol/l European PKU Guidelines 2016 (unpublished)	
0-4	120-360		
	(35-100 normal)	120-360	
5-10	120-480	120-360	
>11	120-700	120-600	

	Plasma reference ranges µmol/l		
MSUD	normal	target treatment range	
Leucine	65-220	200-400	
		75-200 < 5y	
		75-300 > 5y	
Isoleucine	26-100	200-400	
Valine	90-300	200-400	

Frazier DM et al, 2014

Tyrosinaemia	Plasma reference ranges µmol/l		
type 1	normal	blood spot	
	treatment aims		
Tyrosine	30 -120	200 - 400	
Phenylalanine	35 -100	35 -100	

HT1 – teenager age 13 years

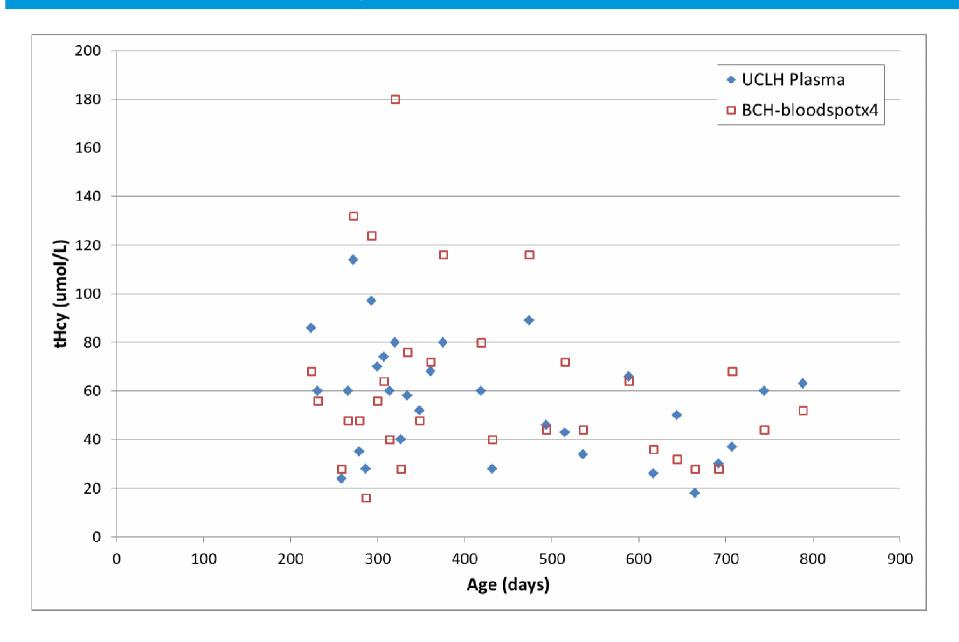
Diet:13g natural protein, Tyr Cooler x 3 (45g aa's)

Date		Tyrosine aim 200-400µmol/l	Phenylalanine 35-100µmol/l	
14.11.09	am	557	34	
	pm	398	75	
	Pm	000	10	
05.12.09	am	747	64	
	pm	589	53	
05.01.10	am	986	100	
	pm	925	70	
16.01.10	am	458	51	
	pm	361	36	
23.01.10	am	388	33	

HCU	Treatment aims			
	plasma		homocysteine	
	methionine	cysteine	free	total
	µmol/l	µmol/l	µmol/l	µmol/l
diet alone	normal	normal	< 10	< 80 -100
	range	range		
betaine	high up to 1000	normal range	< 10	< 80 -100

- Lifetime free Hcy <10 μ mol/l associated with good outcome
- $tHcy > 60\mu mol/l$ before observe free Hcy
- Dried blood spot apply a factor of x 4

Summary


- biochemical monitoring is integral to dietetic management
- monitoring both single and trends of results is important
- repeated/regular monitoring to review interventions
- cannot interpret in isolation need to consider other factors
 clinical picture, growth, dietary intake, compliance

Measurement of uncertainty

- should MU be considered when interpreting results for monitoring?
- would it be helpful to have MU reported with results ?
- is this more of a problem for higher results ?
 - apply same MU then greater range
 - Leuc 400µmol/L (apply MU of 15) = 340 to 460
 - Leuc 800µmol/L (apply MU of 15) = 680 to 920

The child first and always

Great Ormond Street NHS Hospital for Children

