

Mary Anne Preece Birmingham Children's Hospital

Metbionet guidelines

causes of hyperammonaemia

- pre-analytical factors
- acquired hyperammonaemia
- urea cycle defects
- organic acidurias and other IMD

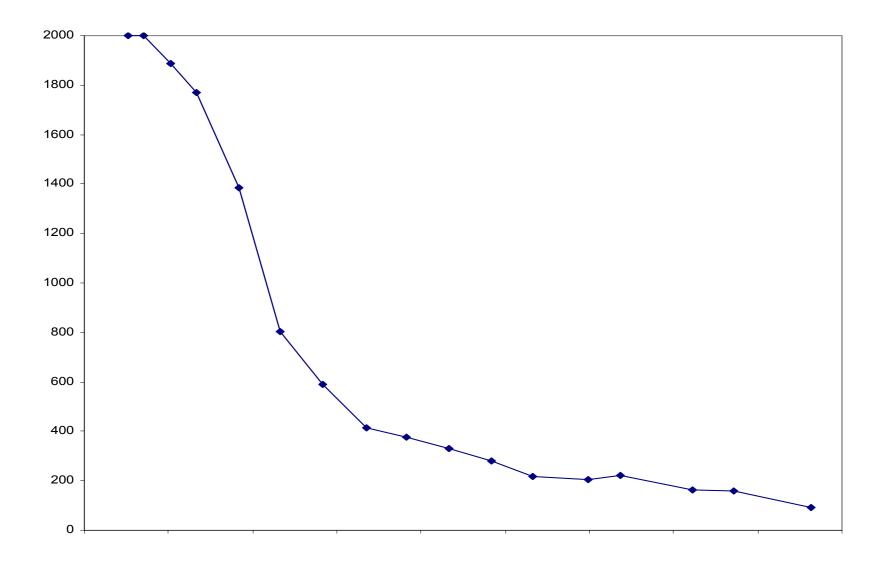
Interpretation

Plasma Ammonia	Interpretation		
(µmol/L)			
<100	 No clinical significance in the acutely unwell neonate May be significant in the context of later presentations and other metabolic disorders in the infant/ child 		
100-300	Mild symptomatic hyperammonaemia develops at concentrations above 100 - lethargy, confusion, vomiting • Could reflect increase secondary to other metabolic disorders • Commonly observed in acquired hyperammonaemia		
300- 500	Significant encephalopathic features develop at concentrations above 300 - increased likelihood of urea cycle defect		
500-2000	Severe hyperammonaemia associated with coma and convulsions Neonatal onset urea cycle disorders/organic acid disorders likely		

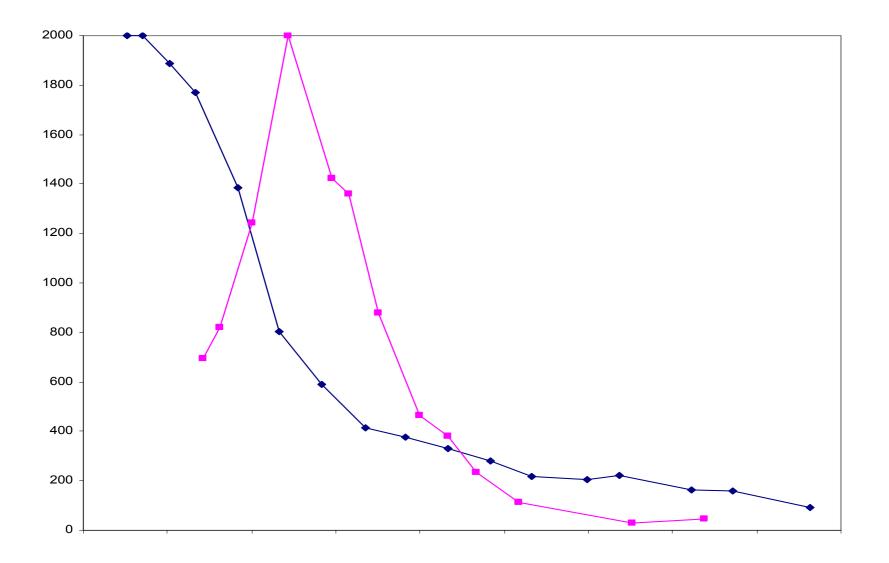
Ammonia 500-2000µmol/l

 normalisation of ammonia within 24-48h compatible with good neurological outcome

 diagnosis usually achievable within few hours


Investigation of hyperammonaemia

- first line investigations
 - urea
 - blood gases
 - liver function tests
 - electrolytes, calcium
 - glucose, lactate
 - urine ketones
- specialist investigations
 - plasma and urine amino acids
 - organic acids +/- orotic acid
 - acyl carnitines


Treatment of hyperammonaemia

- stop protein
- arginine
- benzoate
- phenylbutyrate
- CVVH (continuous veno-veno haemofiltration) if NH₃ >350µM

CVVH and plasma ammonia (μ M)

CVVH and plasma ammonia (μ M)

Ammonia 100-300 µmol/l

4 cases

- hyperinsulinaemia hyperammonaemia syndrome
- N-acetylglutamate synthetase
- 1 year old girl
- 34 year old lady

Hyperinsulinism/hyperammonaemia syndrome

- 17m boy
 - 3rd afebrile seizure
 - 2 previous seizures
 - 3 months previously
 - 1 week previous
 - glucose 2.7 mmol/l

PMH nil of note

Investigations

- Na, K, LFTs, acid base NAD
- NH₃ 152 μmol/l
- Endocrine (glucose 2.7mmol/l)
 - cortisol
 - GH
 - insulin
 - C-peptide

85 nmol/l

- 7 mU/l
- 13 pmol/l
- 109 pmol/l

Further endocrine investigations

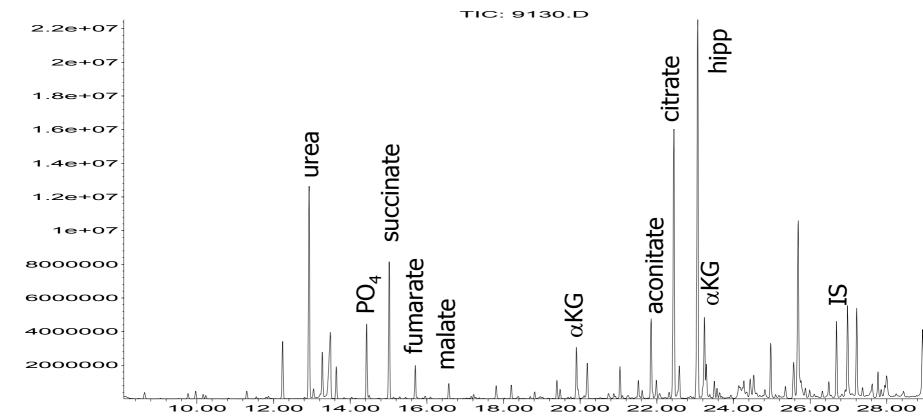
Synacthen test

*cortisol*0 mins
30 mins
580 nmol/l
60 mins
623 nmol/l

- VLCFA normal
- CT pancreas normal

Metabolic investigations

- urine amino acids
- urine organic acids
- acyl carnitines


NAD TCA intermediates NAD

- plasma quantitative amino acids
 - alanine 147 μmol/l
 valine 135 μmol/l
 isoleucine 42 μmol/l

 - leucine
- FFA
- 3OH butyrate

42 μmol/l 74 μmol/l

> 838 μmol/l 301 μmol/l

Abundance

Time-->

Progress

asymptomatic pre-prandial hypoglycaemia

glucose mM	NH3 μM	insulin pM	C-peptide pM
2.8	152	13	109
1.8	152		
2.8	98		
2.6		28	192
1.7		241	1073
	67		

probable hyperinsulinism/hyperammonaemia syndrome

- Rx
 - Diazoxide
 - Chlorthiazide
 - Hypostop
 - UCCS
 - protein restricted diet

Glutamate dehydrogenase (GLUD 1 gene)

- allosterically activated by leucine
 - glutamate $\rightarrow \alpha$ -ketoglutarate + NH3
 - expressed in pancreas and liver
- heterozygous for missense gain-of-function mutation
 - ~70% of cases are *de novo* mutations
 - parents may have mild symptoms, previously overlooked
- persistent hyperammonaemia (3-5X ULN)

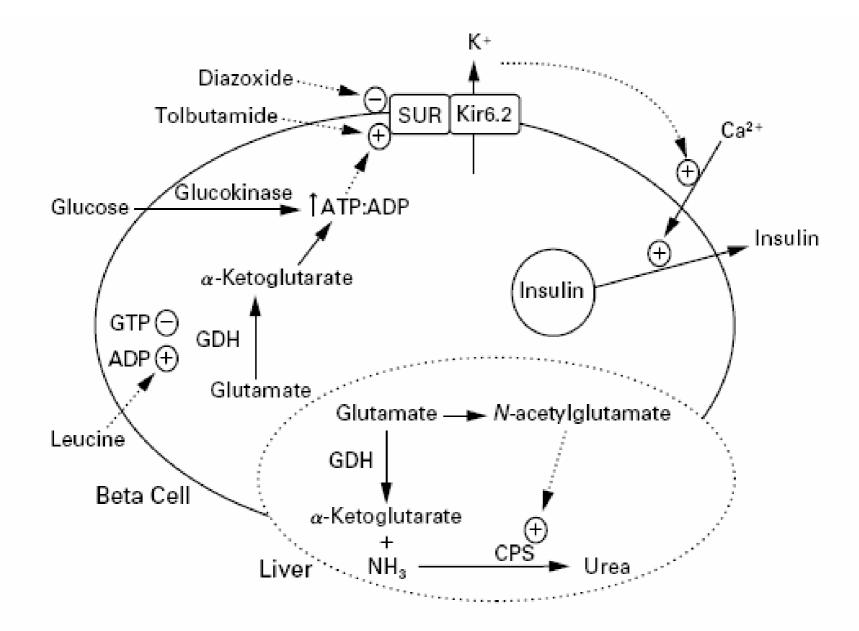


Figure 1. Glutamate Dehydrogenase (GDH) and the Regulation of Insulin Secretion and Hepatic Ureagenesis. *N Engl J Med 1998;338:1352-7*

NAGS deficiency

- first reported 1981 Bachmann et al
 - neonatal hyperammonaemia
 - responded to benzoate, carbamylglutamate, arginine
- subsequently
 - neonates and children described
- diagnosis
 - hyperammonaemia without orotic aciduria
 - large liver biopsy required
 - DNA now available

N-acetylglutamate synthetase

acetyl CoA + glutamate ^{NAGS}→ N-acetylglutamate + CoA $NH_4^+ + CO_2 + ATP \xrightarrow{CPS} + carbamyl phosphate + ADP$

NAGS deficiency case

- 11y boy (1 of 7 children)
- h/o episodes of acute confusion
 - abdominal pain
 - headache
 - no response to paracetamol
 - dislikes protein since a young child
 - behind at school

Investigations

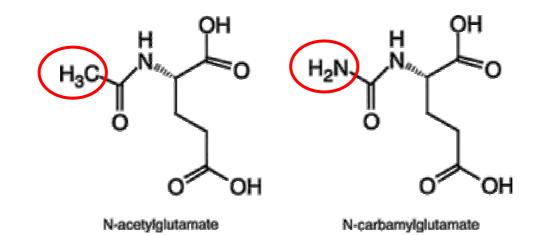
- ammonia 187 μmol/l
- urine organic acids
- urine orotic acid
- plasma and blood spot acyl carnitines
- plasma amino acids (previously normal)
 - glutamine 935 μmol/l
 - alanine 596 µmol/l
 - citrulline 25 μmol/l

Progress

- readmitted
 - commenced arginine and benzoate
- on discharge
 - ammonia 41 μmol/l
 - coherent
 - engaged in conversation
- in outpatients
 - dad begging for same treatment for 2 sibs

DNA for NAGS gene

- Johannes Haeberle, Muenster
 - homozygous mutation
 - ?pathogenic


Family studies

- 2 girls had protein aversion
- 3 sibs no symptoms
- 1 infant
- DNA analysed blind to clinical status
- 2 girls and infant also affected
- slight hyperammonaemia in 2 girls

Somalian family

- 4 children affected with mild NAGS deficiency
- treated with benzoate and arginine
- carbaglu not necessary

Carbamylglutamate

carbamylglutamate test 200mg/kg and measure NH₃ 2hourly for 6 hours

http://www.biochemj.org/bj/372/0279/bj3720279f06.gif

1 year old girl

- FTND
 - developing and growing normally
 - pulls to standing
 - fully immunised
 - no illnesses
- day 1 of illness (age 10m)
 - not herself, decreased feeding, drowsy
 - CT scan normal, CSF normal
 - EEG ? encephalitis
 - R_x acyclovir, cefotaxime
 - home day 10

- day 14
 - 24h h/o vomiting and increasing lethargy, signs of viral infection
 - LFTs abnormal
 - Alt 1377 IU/L
 - INR 4.3
 - ammonia 157 μmol/l
 - stop acyclovir, iv vitamin K
 - home day 24
- day 27
 - URTI and pyrexia, drowsiness
 - Alt 2895 IU/l
 - INR 2.4
 - R_x acyclovir, amoxycillin, metronidazole, cefuroxime, vitamin K, parvolex, fluid restriction
 - transfer to liver unit day 28

Progress at BCH

- gradual improvement in LFTs
- due to be discharged

BUT

 further episode floppy and lethargic with vomiting

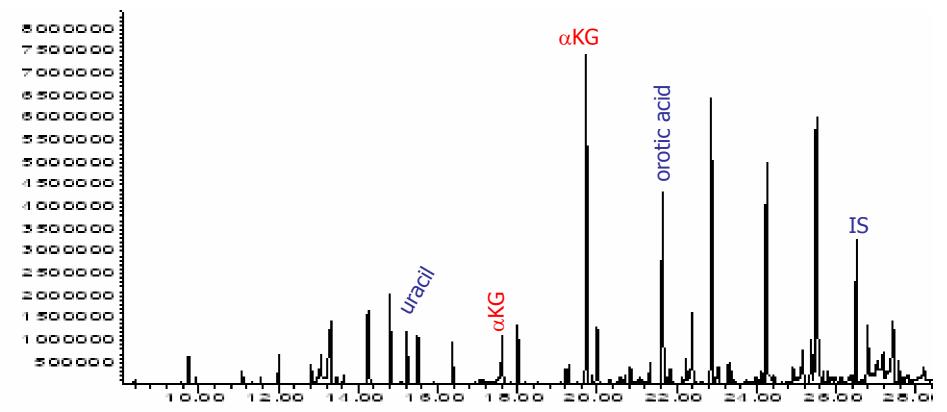
-	ammonia uM		
01/04/2006 15:00		grizzly, vomited, GCS 12/15	
01/04/2006 19:50	125	no protein	
02/04/2006 10:00	79	no protein	
02/04/2006 16:00		recommenced half strength feeds	
02/04/2006 22:30	77		
03/04/2006 09:50	28	reintroduce full strength feeds	
04/04/2006 10:15	274	stop protein	commenced
04/04/2006 15:30	64		
05/04/2006 02:30	40	1 g/kg/day protein	
05/04/2006 19:15	57	1.3 g/kg/day protein	
06/04/2006 09:50	34	1.5 g/kg/day protein	
07/04/2006 09:40	21		

IMD investigations

- glutamine
- alanine
- proline
- citrulline

1281 μmol/l 682 μmol/l 348 μmol/l 25 μmol/l

lysinemethionine


613 μmol/l 143 μmol/l

acyl carnitines normal

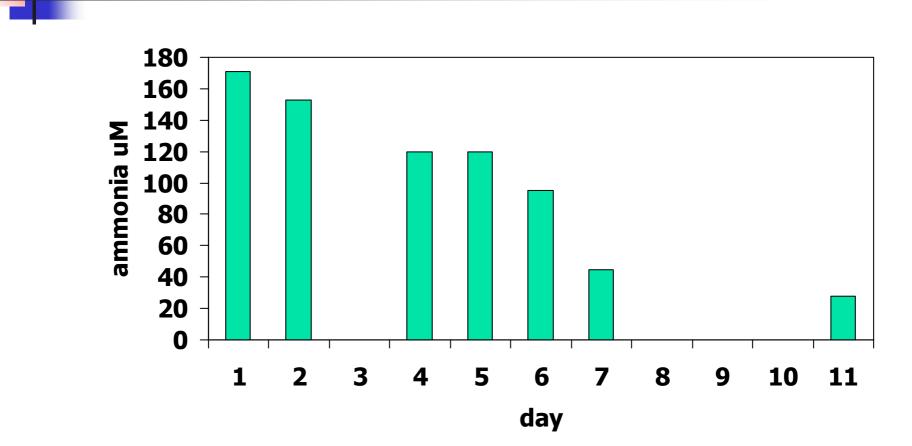
- organic acids
 - increased orotic acid
- DNA
 - truncating mutation in OTC gene

ORNITHINE TRANSCARBAMYLASE DEFICIENCY

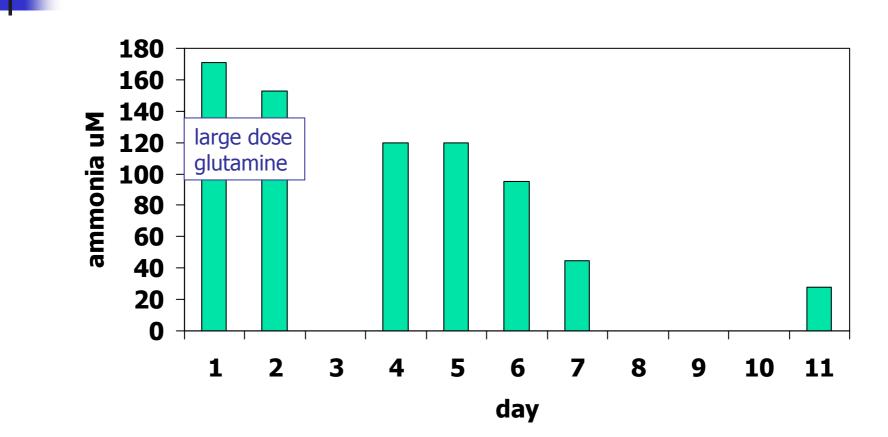
OTC – organic acids

im 🖶 – – 26

OTC case – discussion points


- significance of 2-oxoglutarate
- variability of ammonia concentrations
- plasma ammonia in liver dysfunction

34 year old lady


- infertile
- IVF miscarried
- ovarian hyperstimulation syndrome
 - ascites
 - intra-abdominal sepsis
 - 3X laparotomy for wash-outs
 - worsening LFTs and coagulopathy
 - reduced conscious level
 - acute renal failure
 - ITU

prior to 3rd laparotomy

- NH₃ 171 μmol/l
- 'coma was striking'
- post-op
 - NH₃ 153 μmol/l
- treated with benzoate and arginine

Does she have a urea cycle defect?

Does she have a urea cycle defect?

Pocketchem BA

- 20 µl whole blood
- 3 min 20 sec
- range 7-286 µmol/l

- Hi and Lo warning displays
- detachable printer

Conclusion

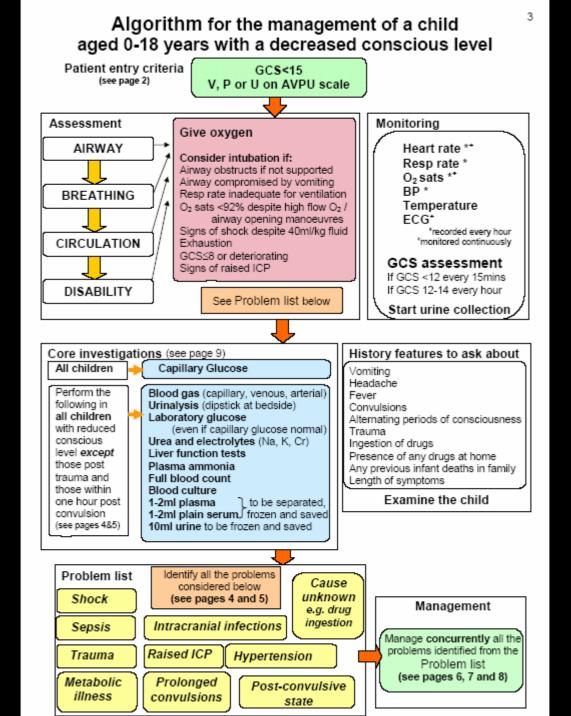
- ammonia >500 µmol/l
 - diagnosis usually straightforward
 - prompt recognition and treatment
- ammonia 100-300 µmol/l
 - pay attention to detail
 - relation to symptoms
 - relation to feeding
 - response to treatment
- ammonia still an under-requested test

The Management of a Child (aged 0 – 18 years) with a Decreased Conscious Level

> An evidence-based guideline for health professionals based in the hospital setting

> > Review date January 2008

Nationally developed by The Paediatric Accident and Emergency Research Group


Appraised by

Royal College of Paediatrics and Child Health

British Association for Emergency Medicine

Table 5 HYPOGLYCAEMIA Investigations If lab glucose result from Core Investigations is <2.6mmol/I then request following tests from saved samples: plasma lactate, insulin, cortisol, growth hormone, free fatty acids, beta-hydroxybutyrate, acyl-carnitine profile (on "Guthrie card" or saved frozen plasma) and urine amino / organic acids	 Treatment:If capillary or lab glucose <2.6mmol/I After Core Investigations taken: child > 4 weeks old give 5ml/kg I.V. 10% glucose bolus child ≤ 4 weeks old give 2ml/kg I.V. 10% glucose bolus Start IV infusion 10% glucose to keep blood glucose between 4 and 7 mmol/I Seek advice from endocrinologist / metabolic specialist for further management
Investigations If ammonia result from Core Investigations is >200 micromol/I then request following from equal camples	 Treatment: Seek urgent advice from a metabolic specialist Start IV sodium benzoate (loading dose 250mg/kg over 90 mins; followed by infusion 250mg/kg over 24 hrs – both diluted in 15ml/kg 10% glucose) If ammonia >500 micromol/l or is not improving and remains between 200-500 micromol/l after 6 hours of sodium benzoate therapy, consider emergency haemodialysis

www.nottingham.ac.uk/paediatric-guideline