Report from the Amino Acids Working Group

Ann Bowron Anny Brown Helena Kemp

Introduction

Helena Kemp Southmead Hospital, Bristol

Where are we now?

Variation in current practice

Where should we be going?

- Is there a need to change/standardise current practice?
- If so what areas need to be addressed?
- If so is there a need to develop Metbionet guidelines?

Existing Guidelines

Amino acid workshop report

- 38th Annual Symposium of the SSIEM Cambridge 2000
- Mayne, Roche & Deverell (2001). JIMD 24: 305-308.

• ERNDIM

- Recommendations to improve the quality of diagnostic quantitative analysis of amino acids in plasma and urine using cation exchange liquid chromatography with post column ninhydrin reaction and detection. (May 2002)
- <u>American college of Medical Genetics</u> (ACMG)
 - Standards and guidelines for Clinical Genetics Labs (Biochemical Genetics
 - Guidelines for amino acid analysis (updated 2003)

Working Group - membership

- Participation by all Stakeholder laboratories invited
- Representation from 5 laboratories
 - Sheffield Children's Hospital Claire Hart
 - Dublin Children's Hospital Dierdre Deverell
 - Birmingham Children's Hospital Mary Anne Preece
 - North Bristol NHS Trust Helena Kemp, Anny Brown
 - United Bristol Hospitals Trust Ann Bowron

Working group - Aims

 'To collect information to guide the development of recommendations for the provision of a comprehensive, appropriately organised, specialist amino acid diagnostic and monitoring service'.

Work streams

- Repertoire
 - Primary amino acid disorders
 - Other conditions
 - Nutrition
- Analytical methods present and future
- Clinical indications
 - Requesting patterns and practices
- Requirements for monitoring IMD
- International views

Afternoon Session

- CSF amino acid analysis
- Amino acids reporting
 - UKNEQAS amino acids cognitive scheme
 - Clinical Biochemists view
 - The Dietician's experience
 - The requesting doctor

Amino Acid Analysis -What do we need to do?

Ann Bowron, Bristol Royal Infirmary Anny Brown, Southmead Hospital

Amino Acid Analyser

- Expensive
- Time-consuming
- Interferences (esp urine)
- Increased number of requests
- Demands on staff + budget

Amino Acid Analyser

- Can quantitate > 60 compounds
- Sigma standard 37 amino acids

- Why are we using this technology
- What are we trying to achieve?
- Which amino acids do we need to measure to achieve this?

Why do we measure amino acids?

- Metabolic screen
 - To exclude/diagnose AA disorder
- Information about other diseases
- Assessment of nutritional status
- Monitor treatment

1. Metabolic Screen

- List of amino acid disorders
- How are they diagnosed?

Spreadsheet of findings (this will be given as a handout)

Established AA disorders

Glutamine Citrulline Arginine Argininosuccinic acid Ornithine Valine Leucine Isoleucine Allo-isoleucine

Phenylalanine Tyrosine Methionine Cystine Taurine Sulphocysteine Serine Glycine Lysine 18 amino acids

Evidence is unclear

Histidine Tryptophan aAAA **OH-lysine** Saccharopine Proline **OH-proline** cystathionine

Homocystine Sarcosine Carnosine Homocarnosine Anserine **B-alanine B-AIBA**

- Few cases described
- Same findings in well siblings
- Conditions are ?benign
- Some described before modern methods used
- ?no recent cases as not in routine standards

2. Amino Acids in other disease states

Spreadsheet - handout

3. Assessment of nutrition status

Amino acids & Nutrition

From diet

- Continuous exchange between structural muscle protein and free aa's in blood
- Plasma aa levels influenced by timing of meals & their calorie and protein content.
- Muscle proteolysis probably triggered by lowering insulin levels and relate to calorie deprivation.

Dietary requirements

- Mature adult
 - Protein turnover 300g/day
 - ~ 40g/day lost, must be replaced
 - RDA ~ 56g/day
- Growth, pregnancy & convalescence
 Need extra protein
- Inadequate intake difficult to diagnose unless severe and prolonged

Total calorie vs isocaloric protein deprivation

- Key aas; glycine, alanine & BCAAs
- Isocaloric protein deprivation
 - BCAA ↓ (particularly value)
 - Alanine ↑, Glycine ↑
- Total calorie deprivation (starvation)
 - BCAA ↑
 - Alanine ↓, Glycine ↓

Use of aa ratios

- Indicator of muscle breakdown
- Monitor patients on restricted diets
 - Increase dietary protein indicated
 - Proteolysis may stress liver in UCD
 - Val chronically low in PA
 - ? Patients very sensitive to protein deprivation

Ratiogram

Proc 1st International Conf Amino Acids, Vienna, 1989

Interpretation

- Timing of sample IMPORTANT
- What control data are we using?
 - Fasting levels / 8 hours
 - 4 hrs post-meal
 - ? Protein ingested
- Interpretation with care!

Conclusion

- Current methods may not be sustainable
- Number of AAs routinely measured can be reduced
- ? Alternative methods
- ? Other AAs as second line tests

Obstacles

- Lack of evidence for some amino acid disorders
- Resistance to change
- Specific requirements for individual labs