Neonatal Biochemistry Investigation for Inherited Metabolic Disorders (IMDs)

Anne Green
Birmingham Children's Hospital

Leeds May 2005

- Overview of how IMDs present
 - cases

- Range of Disorders & Incidence
 - disorders presenting in the newborn

Approach to Investigation

Presentation of IMD

- Intrauterine
 - HELLP
 - AFLP

HELLP

- Haemolysis
- Elevated Liver Enzymes
- Low Platelets

AFLP

- Acute Fatty Liver of Pregnancy
 - severe liver dysfunction
 - thrombocytopenia

LCHADD

- Long chain 3-hydroxy acyl CoA dehydrogenase deficiency
 - defect of mitochondrial fat oxidation (1990)
 - hypoketotic hypoglycaemia
 - metabolic collapse (esp. liver)
 - death
 - other problems include:
 - myopathy and cardiomyopathy
 - retinitis pigmentosa
 - FTT with diarrhoea and vomiting
 - common mutation G1528C

HELLP/AFLP and **LCHADD**

(Wilcken et al, 1993)

- 11 pregnancies in 5 mothers (HELLP)
- 6 LCHADD babies

In pregnancies where foetus has LCHADD, the frequency of preeclampsia related conditions is high

HELLP/AFLP and LCHADD (Ibdah et al 1996)

16 families with LCHADD

- 12 different mutations
- G1528C found in 50% of mutant alleles
- 11 women had AFLP
- All these women were carrying foetuses with G1528C (5 homozygous, 6 heterozygous)
- LCHADD G1528C mutation associated with AFLP

Fatty Acid Oxidation Defects in the Foetus which can cause AFLP/HELLP

- LCHADD
- MCADD
- Carnitine Palmitoyl transferase type 1
- SCADD

Case 1

1 month

- presented to A&E with hypoglycaemia
- collapse → ITU Died
- post mortem fatty acid changes in liver/kidney
- LCHADD diagnosed P.M. (skin fibroblasts)

Case 1

Mother 35/40 HELLP

 Cord blood diagnosis LCHADD (acyl carnitines)

Treatment - MCT

Investigation of HELLP and AFLP

Mother

- organic acids (urine)
- carnitine, acyl carnitines (blood)
- glucose, lactate, (free fatty acids, 3-hydroxybutyrate)
- +/- LCHADD DNA

Baby

- organic acids (urine)
- carnitine, acyl carnitines (blood)
- LCHADD DNA
- ? fibroblasts fat oxidation (esp if baby dies)

Presentation of IMD

- Intrauterine
 - HELLP
 - AFLP

- Birth
 - Hydrops
 - Dysmorphism

Fetal and Neonatal Hydrops

- Hydrops
 - IMDs are present in approx. 1-2% of nonimmune hydrops fetalis

 Investigate if unexplained, familial or history of still-births/neonatal deaths/ spontaneous abortions

Investigation for Neonatal/Foetal Hydrops

- skin (chromosomes & ? enzymes)
- blood- haemoglobinopathies
- placenta histology
- urine (IMD) (amniotic fluid)
- liver/muscle- histology/biochemistry

– www.metbio.net

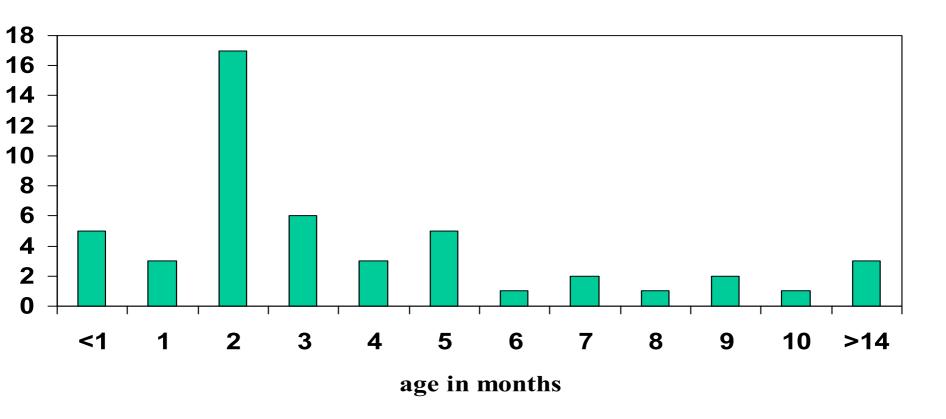
Presentation of IMD

- Intrauterine
 - HELLP
 - AFLP

- Birth
 - Hydrops
 - Dysmorphism

IMD & Dysmorphism in the neonate

- Menkes
- Zellwegers and Z like (Perox disorders)
- Lysosomal
 - GM2,ML2,MPS,Multiple sulphatase
- Congenital hypothyroidism
- Maternal PKU
- CDGS
- Cholesterol synthesis defects
- GA II
- Sulphite/xanthine oxidase
- Congenital lactic acidoses
- Mevalonic kinase


Presentation & IMD

- Intrauterine
- Birth

SUDI

SUDI cases 1999/2000 - age at death

Sudden Unexpected Death in Infancy (SUDI)

Explained SUDI

- infection (respiratory, CNS, GI)
- cardiovascular
- accident/trauma
- metabolic

SIDS

 no cause of death is found after a thorough post mortem examination

Investigation of SUDI

- Non accidental injury
 - radiology exam
 - forensic investigation option

Infection

Metabolic

Sudden Unexpected Death in Infancy

 Working Group RCPath & RCPCH (Sept 2004) Baroness Helena Kennedy

SUDI

Immediate Specimen Collection

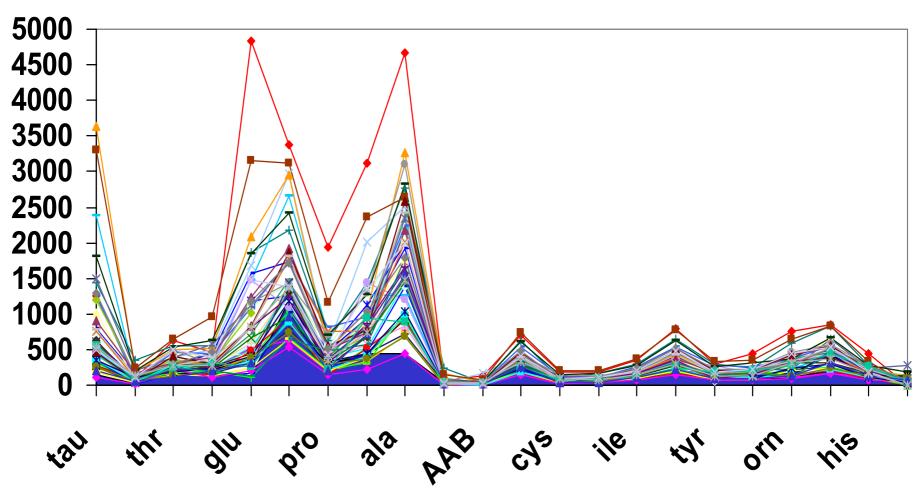
- Blood
 - blood culture
 - blood spots IMD
 - blood lithium heparin Chromosomes
 - Blood serum Toxicology

Nasopharyngeal aspirate & swabs

Urine Tox & IMD

Biochemical Investigations

- Amino acids (blood &urine)
- Organic acids (urine)
- Acyl carnitines(blood spot)


Metabolic Investigations Quantitative plasma amino acids

- All show similar abnormalities
 - grossly increased glutamine, glycine, alanine and proline consistent with acute collapse
 - taurine, aspartate, serine, ornithine increased consistent with haemolysis/autolysis

Quantitative plasma amino acids (μM)

Upper limit of normal indicated by shaded area

Birmingham Childrens Hospital NHS Trust United Kingdom

Acyl carnitines in SUDI cases

- blood spots +/- plasma
- analysed by tandem mass spectrometry

Acyl carnitine results in SUDI

- most specimens show
 - increased free carnitine
 - increased short chain acyl carnitines
 - decreased long chain acyl carnitines

Metabolic Investigations (if indicated)

- Cultured fibroblasts
 - enzymes
 - DNA

IMD diagnoses in SUDI cases

Carnitine transporter

• LCHADD - 2

Citrullinaemia

Sick Neonate

- Well at birth/no signs or symptoms
- Family History
 - Consanguinity
 - Sibling illness/death
- Presentation
 - Non specific (eg poor feeding, hypotonia)
 - Symptoms relate to feeding
- Clues
 - Smell
 - Hair/skin
 - Biochemical' features

Presentation in the neonate

- Hypoglycaemia
- Acid base disturbance
 - Metabolic acidosis
 - Respiratory alkalosis
- Liver dysfunction/organomegaly
 - Jaundice
 - Hepatitis
 - Liver failure
- Neurological dysfunction
 - Seizures
 - Hypotonia
 - Conscious level [↓]
 - Encepaholopathy

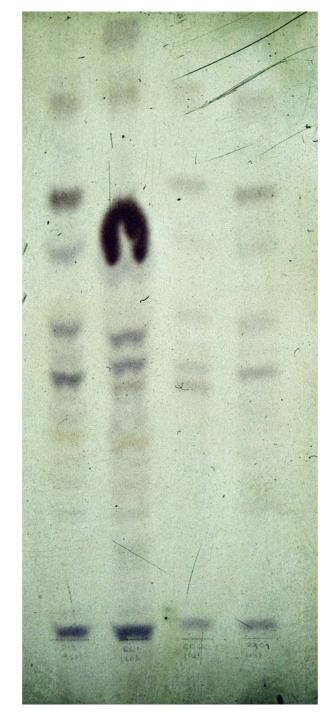
Case 2

- Consanguinous parents, 2 older siblings both well
- 1 Sib died aged 4 days no Dx
- Normal birth 38/40
- Well until 26 hours jittery, not feeding
- 40h seizures, floppy
- 45h 'hiccups', required ventilation

Case 2 (cont'd)

- Acid base normal
- Plasma ammonia normal
- Liver enzymes normal
- Calcium, Magnesium, Glucose normal
- Hb & FBC normal

Lactate 3.5mmol/l (sl increase)



Case 2 (cont'd)

- Amino acids(urine)
- Organic acids

Increased urine glycine

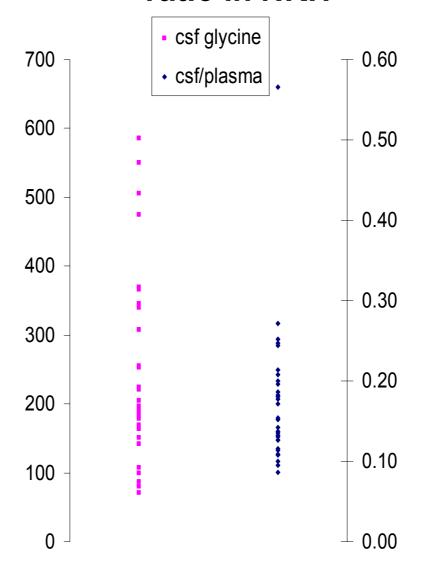
Glycinuria

- Bacterial (Hippuric acid)
- Valproate therapy
- Organic acid disorder eg MMA, PA, IVA
- Non ketotic hyperglycinaemia
- Iminoglycinuria
- Prolinaemia / Hydroxyprolinaemia
- Atypical persisitent hyperglycinaemia

Metabolic investigation

- csf glycine
- plasma glycine

- $205 \mu mol/l (<20)$
- 1626 μ mol/l (<700)


csf:plasma glycine ratio

0.12 (< 0.03)

Consistent with non-ketotic hyperglycinaemia

csf/plasma glycine ratio in NKH

Progress

- ventilation withdrawn
- died 24h later
- liver biopsy taken
 - glycine cleavage enzyme undetectable

ante-natal diagnosis possible

CSF quantitative amino acids

0.5ml clear csf in plain bottle (non traumatic)

Glycine

- present at low concentrations (<20 μM)
- non ketotic hyperglycinaemia
 - looking for high concentrations (usually >50 μM)

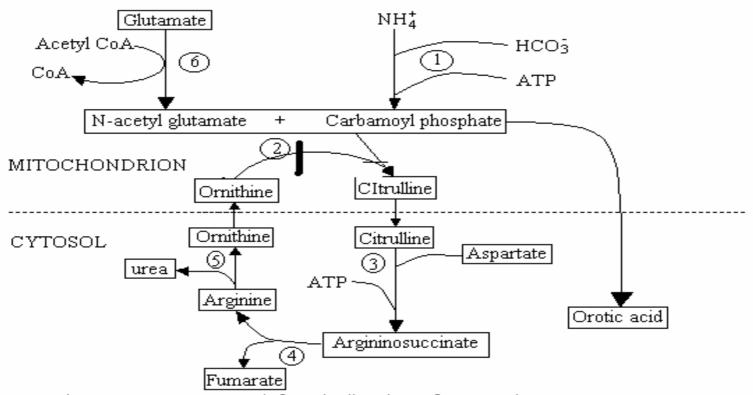
Serine

- present at low concentrations (approx 40 μM)
- serine deficiency disorders
 - looking for low concentrations (usually <20 μM)

Case 3

- 1st child unrelated caucasian parents
- 38/40 well for first 24h
- 28h jittery (plasma glucose 4mmol/l)
- 40h grunting respiration → NNU peripheral shut down

Case 3 (cont'd)


- CSF glucose & protein normal
- Na,K Ca ,Mg normal
- Started antibiotics (infection screen awaited)
- 50h convulsions Rx phenobarb
- 62 h unresponsive, hyperventilating
- 72h- further convulsions & Bradycardias
- 74h DIED ? Sepsis

Case 3 cont'd

- PM
 - Fatty liver
 - Urine
 - Glutamine, alanine & citrulline +++
 - ASA anhydrides
 - Orotic acid ++

Numbers represent enzyme defects in disorders of urea cycle

- 1 Carbamoyl phosphate synthetase
- 2 Ornithine carbamoyl transferase
- 3 Argininosuccinate synthetase

- (4) Argininosuccinate lyase
- Arginase
- N-acetylglutamate synthetase



Plasma (retrieved ASA + anhydrides

citrulline

DIAGNOSIS - Argininosuccinicaciduria

ASA lyase deficiency confirmed in cultured fibroblasts

Argininosuccinic Aciduria

Neonatal onset

- Lethargy/poor feeding
- Vomiting
- Hypotonia
- Hepatomegaly
- Seizures
- Coma

Case 4

- Previous sib died at 2 days no diagnosis
- Age 4 days
 - 24 hour history of poor feeding and excessive sleeping
 - totally breast-fed
 - on admission
 - convulsing
 - hypothermic
 - hypoglycaemic (lab glucose 0.7 mmol/l)

Case 4 - metabolic Ix

- urine organic acids
 - dicarboxylic aciduria
 - glycine conjugates (C6,C8)

plasma carnitine

- total 13 mmol/l (23-60)

- free 4 mmol/l (15-53)

Case 4 - metabolic lx

•DNA

-G985 homozygote

 Δ - medium chain acyl CoA dehydrogenase (MCAD) deficiency

MCAD deficiency

- commonest fatty acid oxidation disorder
 - approx 1 in 10,000 births in UK

- peak age of presentation 12-18m
 - 25% die during first attack

readily treatable

fasting tolerance improves with age

Case 4 - family history

previous sib died at 2 days

- Coroner's PM
 - neonatal infection due to prolonged rupture of membranes; no metabolic lx

- tissue obtained for DNA analysis(retrospective)
 - G985 homozygote

Lessons

- importance of family history
- relationship between symptoms and feeding
- MCAD can present in the neonatal period (especially if breast fed)

Range of Disorders

- Intermediary metabolism 'intoxication'
 - Amino acids
 - Organic acids
 - Urea cycle
 - Carbohydrates
 - Purines/pyrimidines

Range of Disorders

- Intermediary metabolism 'intoxication'
 - Amino acids
 - Organic acids
 - Urea cycle
 - Carbohydrates
 - Purines/pyrimidines

- Energy production (liver,heart,muscle,brain)
 - Mit resp chain/electron transport disorders
 - Fat oxidation
 - Gluconeogenesis
 - Glycogen storage

IMD Diagnoses at BCH* 2000 - 2004

* excludes sibling diagnoses & at risk cases

	0-7 days	7-14days	15-28 days
UCD	7		
NKH	6	2	3
Fat Ox	3	1	1
Org acid	3		2
AA (Tyr& MSUD)	1	2	
Galactosaemia		6	1
Zellweger		2	3
Elect Tr chain		2	
GSD		2	
SLO			1
Total	20	17	11

- NKH
- UCD
- Galactosaemia
- Fat oxidation
- Organic acids

Approach to Investigation

- Newborn screening
- Sib testing
- Clinical Presentation

Newborn Screening

- Current universal screening
 - PKU*
 - Congenital hypothyroidism
 - Duchenne (Wales)
 - Cystic Fibrosis (some areas only)
 - Sickle Cell disorders
 - Plus MCADD in ~50% UK
 - * plus other amino acids MSUD, tyrosinaemia in some areas

Importance of Sib Testing

- When to test
 - need to start treatment for baby
 - when does biochem abnormality appear?
- How to test
 - Metabolite
 - Enzyme
 - DNA

Approach to Investigations

- Ist line test
 - 'CLUES to further tests
- 2nd line tests
 - Metabolites
- 3rd line tests
 - Enymes
 - DNA

First stage Investigations

BLOOD

- Calcium
- Glucose
- Blood count
- Blood gases
- Sodium, potassium
- Liver function
- Urea, uric acid
- Lactate
- Ammonia
- FFA

First stage Investigations

URINE

- Appearance & Smell
- Colour
- pH
- Reducing substances/glucose
- Ketones
- Ferric Chloride
- DNPH
- Cyanide Nitroprusside
- TLC MMA

Metabolites

- Amino acids (urine & plasma)
- Organic acids (urine)
- Acyl carnitines (blood)

- +/-vlcfa
- Discuss with Lab

Summary

- Consider IMD
 - Intrauterine
 - SUDI
 - Sick baby
- Commonest disorders
 - Intermediary metabolism
 - Energy metabolism
- Staged approach to Ix

