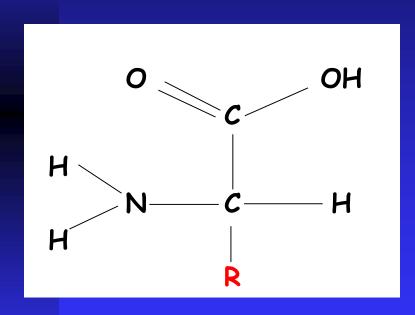
Amino Acid Analysis-Back to basics....

Fiona Carragher
Biochemical Sciences
GSTS Pathology
St Thomas' Hospital
London


Amino acid analysis

Why are amino acids important

When to consider amino acid analysis

- Available methodology
 - ◆ Limitations and pitfalls

Amino Acid Structure

- Amino group (-NH₂)
- Carboxyl group (-COOH)
- Distinctive R group

Amino Acids

Essential

Phenylalanine

Threonine

Methionine

Lysine

Tryptophan

Leucine

Isoleucine

Valine

Histidine

Non-essential

Tyrosine

Aspartate

Asparagine

Alanine

Serine

Glycine

Cysteine

Glutamine

Glutamate

Proline

Arginine

Amino acid disorders

- Clinically and biochemically heterogeneous
- Can present at any age
- Characterised by
 - Pathological accumulation of normal metabolites
 - Presence of non-physiological metabolites
- Combined incidence 1:6000

Primary amino acid disorders

- Phenylketonuria
- Tyrosinaemia (I/II/III)
- Maple Syrup Urine Disease
- Homocystinuria
- Non-Ketotic Hyperglycinaemia
- Hyperprolinaemia (I/II)
- Sulphite oxidase def
- OAT deficiency

- Urea Cycle Disorders
 - OTC deficiency
 - ◆ CPS deficiency
 - ◆ Citrullinaemia
 - Argininosuccinic aciduria
 - Argininaemia
 - NAGS deficiency
 - **♦** HIHIH

Primary renal amino acid disorders

- Cystinuria
 - ◆ Cystine, Ornithine, Arginine, Lysine
- Hartnup disease
 - Neutral amino aciduria
- Lysinuric protein intolerance
 - Lysine, Ornithine, Arginine
- Iminoglycinuria
 - Proline, Hydroxyproline, Glycine

Secondary causes of increased amino acids

Generalised aminoaciduria

- Fanconi Syndrome
- Galactosaemia
- Tyrosinaemia type I
- Cystinosis

Increases in urine

 Glycine- renal immaturity, anticonvulsant Rx

Increases in plasma

- Alanine- lactic acidaemia
- Glutaminehyperammonaemia
- Methionine/tyrosine- liver disease
- Isoleu/leu/val- ketosis

Some pitfalls to avoid

- Not always increased amino acids
 - ◆ Serine deficiency

- Free amino acids
 - ◆ Homocystinuria
 - ◆ Urine homocystine not sensitive
 - ◆ Analysis of choice is total homocysteine

When to consider amino acid analysis

- Neonate- Lethargy/coma/seizures/vomiting
- Hyperammonaemia
- Hypoglycaemia
- Ketosis
- Metabolic acidosis or lactic acidaemia
- Metabolic decompensation/encephalopathy
- Unexplained Liver disease
- Unexplained developmental delay
- Renal disorders- Calculi, Tubulopathy

Specific considerations

- Gyrate atrophy of retinal
 - ◆ Ornithine Amino Transferase deficiency

- Marfan-like appearance/Vascular abnormalities
 - ◆ Homocystinuria (Cystathione B Synthase def)

- Hyperkeratosis
 - ◆ Tyrosinaemia Type II

Choice of sample

Plasma

- Most informative
- ◆ Often not the sample of choice by families

Urine

- AA concentrations much more variable
- Prone to interference from medication
- Necessary for diagnosis of renal transport disorders

CSF

- Useful in specific disorders
- Paired with plasma

Amino acid analysis

- Spot test
- Qualitative screening
 - ◆ TLC
 - ◆ HVE
- Quantitative analysis
 - **→** HPLC
 - ◆ AAA
 - ◆ TMS

Spot tests

- Ferric Chloride
 - ◆ Reacts with a number of compounds to form a colour
 - ◆ PKU, Tyrosinaemia, MSUD
- Cyanide/Nitroprusside
 - ◆ Reacts with sulphur containing amino acids
 - Homocystinuria, Cystinuria
- 2,4 Dinitrophenylhydrazine
 - ◆ Reacts with branch-chain keto acids and phenylketones
 - MSUD, PKU

Spot tests

ADVANTAGES

- Cheap
- Easy
- No expensive equipment required

LIMITATIONS

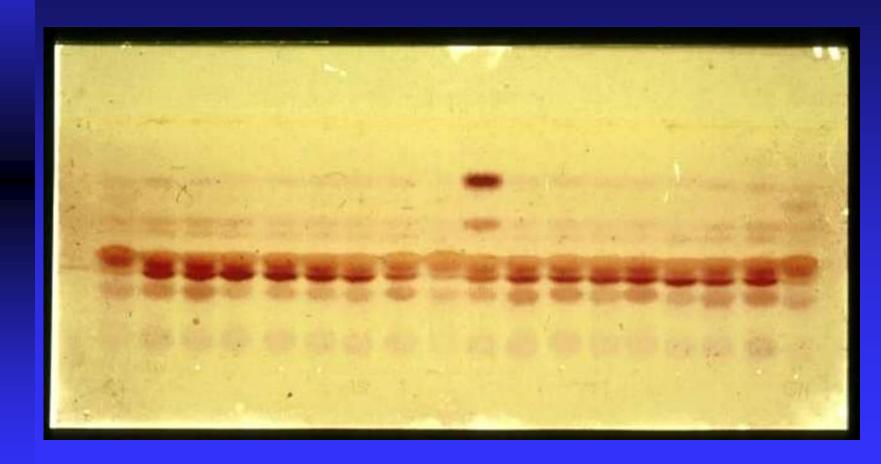
- Prone to interference
- Neither sensitive or specific
- May mislead investigations
- Health and safety issues

Qualitative analysis

- Thin Layer Chromatography
 - ◆ 1D/2D
 - ◆ Ninhydrin to visualise
 - ◆ Selective staining increases number of compounds identified

High Voltage Electrophoresis

Qualitative screening


ADVANTAGES

- Cheap
- Can be used to pre-screen samples before referring

LIMITATIONS

- Significant staff time
- Technically demanding
- Interpretation requires experience
- Does not identify all compounds of interest
- May only detect gross abnormalities

TLC- Maple Syrup Urine Disease

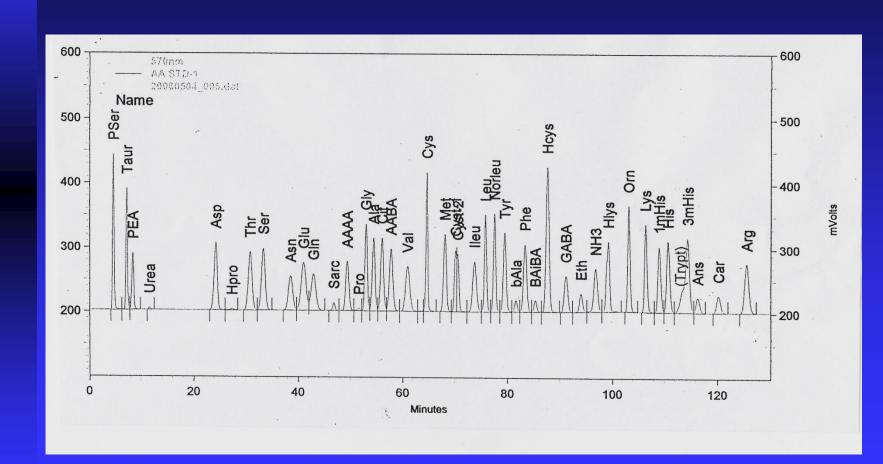
Quantitative analysis

- Separation of free amino acids
- Identification of compounds
 - ◆ UV detection- retention time
 - ◆ MS detection

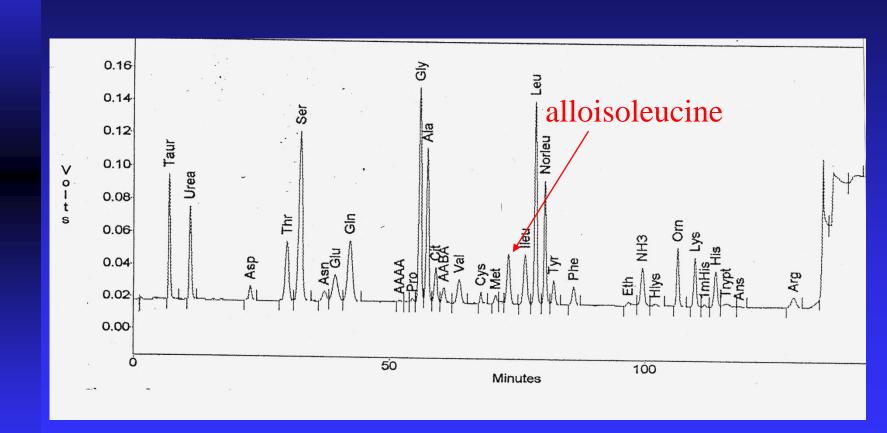
- Quantitation of compounds
 - Comparison to standards

Amino acid analyser (AAA)

Quantitative analysis- AAA


ADVANTAGES

- Dedicated instrument
- Specific for amino acids
- Will identify all compounds of interest


LIMITATIONS

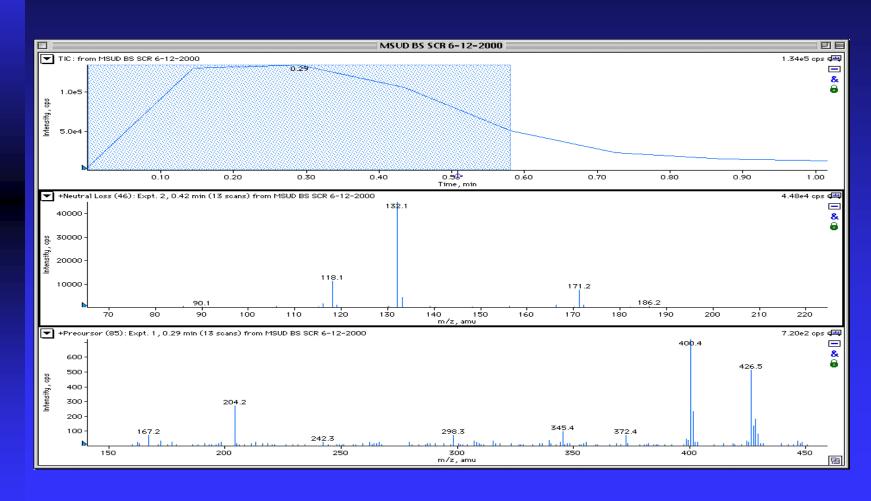
- Long run times
- Significant maintenance
- Often running at capacity
- Urgent cases need rapid results

AAA- separation

AAA- Maple Syrup Urine Disease

Quantitative analysis- TMS

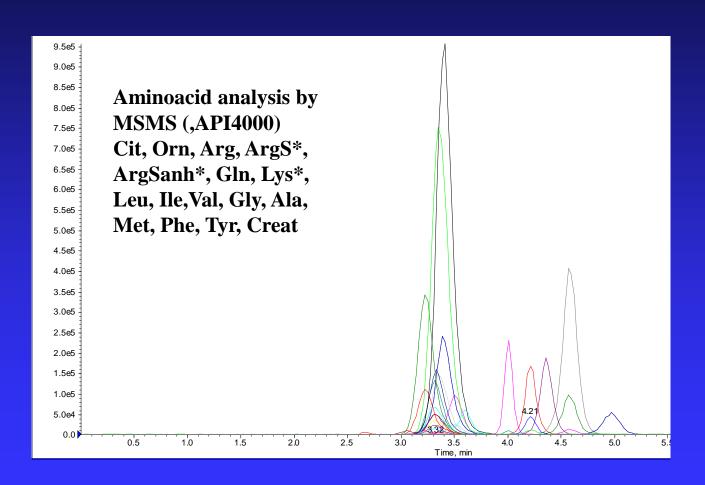
Quantitative analysis- TMS


ADVANTAGES

- Established in IEM field
- Can measure other compounds of interest on same injection
- Simple sample prep
- Rapid results
- Ideal for targeted screen

LIMITATIONS

- Expensive capital cost
- Expertise in technology required
- Isobaric/isomeric compounds require separation


TMS-Maple Syrup Urine Disease

TMS- Future of routine AA analysis

- Rapid Commun in Mass Spec Piraud et al 19(22):3287-97
- 76 Amino acids detected
- Ion pairing reversed phase LC linked to positive electrospray MS
- Throughput of 2 samples per hour

TMS-Amino acid analysis

Conclusion

- Understand the limitations of strategy
 - ◆ State which disorders are confidently excluded

- In clinical emergency
 - ◆ Rapid targeted TMS testing
 - Good communication to specialist centre