Metabolic Muscle Diseases

Dr Tim Hutchin, Birmingham Children's Hospital

Jan 13, 2012

Metabolic myopathies are heterogeneous conditions with defects of muscle energy metabolism that result in predominantly skeletal muscle dysfunction but other muscles may be affected.

Most are considered primary inborn errors of metabolism and are associated with enzymatic defects that affect the ability of muscle fibres to maintain adequate ATP supplies.

Muscle contraction and relaxation require ATP

Sources of ATP for muscle

Three types of muscle:

Smooth muscle or "involuntary muscle" is found within the walls of organs and structures such as the oesophagus, stomach, intestines, uterus, bladder, blood vessels.

No real energy stores.

<u>Cardiac muscle</u> an "involuntary muscle" but more akin in structure to skeletal muscle. It contracts quite slowly, but it is used continuously and the total energy consumption is high.

Totally specialized for energy production (30-40% of ventricular mass is made up of mitochondria).

No real energy stores.

Skeletal muscle or "voluntary muscle" is used to effect skeletal movement such as locomotion and in maintaining posture. Main energy stores are glycogen (3/4 of body's glycogen)

3 major pathways supply exercising muscle with ATP

- Phosphocreatine stores provide rapid but very brief supply (~1-5 minutes)
- 2. Glycogen metabolism: anaerobic metabolism can then supply ATP but for more sustained activity aerobic metabolism is utilised as long as oxygen supplies meet demand.
- 3. Fatty acid metabolism is utilised for sustained submaximal exercise (ie >40 minutes).

Muscle Fibres for Different Jobs

	Type I fibres	Type II a fibres	Type II b fibres	
Contraction time	Slow twitch	Fast twitch	Very fast twitch	
Resistance to fatigue	High	Fairly high	Low S	
Used for	Aerobic 'Marathon runners fibres'	Long-term anaerobic 'General purpose fibres'	Short-term anaerobic 'Sprinters fibres'	a
Mitochondrial density	High	High	Low	
Oxidative capacity	High	High	Low	
Glycolytic capacity	Low	High	High	
Myoglobin	High	High	Low	
Glycogen content	Low	Intermediate	High	
Major storage fuel	Triglycerides	Creatine phosphate, glycogen	Creatine phosphate, glycogen	

Inherited Disorders of Muscle Disease

Structural Defects

 Defects in proteins involved in maintaining muscle tone and the contraction process (myopathies) e.g. muscular dystrophies, congenital myopathies.

• Membrane Transport Defects

 Defects in ion or neurotransmitter transport proteins or receptors (Channelopathies), e.g. myotonia congenita, hyper and hypokalemic periodic paralysis

• Metabolic Myopathies

 Defects in enzymes involved in muscle metabolism leading to energy depletion or structural damage.

Metabolic Muscle Disease

Inherited disorders of metabolic pathways.

Muscle is an ATP generating factory.

Metabolic muscle disease causes either:

Energy (ATP) depletion:

Anaerobic (glycogenolysis, glycolysis)

Aerobic (fatty acid oxidation, electron transport chain)

Structural damage:

Accumulation of abnormal glycogen (lysosomal or cytoplasmic) Free radical damage

Symptoms of Metabolic Muscle Disease

Metabolic myopathies have a wide range of symptom onset.

Most present early in life (infancy to adolescence)

Symptoms may be very mild (exercise intolerance) to fatal

Generally, onset and severity depends on the disorder and degree of enzyme deficiency (complete or partial)

Symptoms may be treatable

Symptoms of Metabolic Muscle Disease

- •Exercise intolerance
- •Muscle pain (myalgia) after exercise
- •Cramps
- •Muscle damage
- •Myoglobinuria
- •Rhabdomyolysis ([↑]CK) leading to renal failure
- Proximal muscle weakness
- •Hypotonia
- •Other organs may be affected

Further Symptoms of Metabolic Muscle Diseases

Myoglobinuria:

When overexertion triggers acute muscle breakdown (rhabdomyolysis), muscle proteins like creatine kinase and myoglobin are released into the blood and ultimately appear in the urine. Myoglobinuria can cause severe kidney damage if untreated.

Malignant Hyperthermia:

People with metabolic muscle disorders may be at higher risk for a potentially fatal reaction to certain common general anaesthetics.

Cardiac Care:

Some patients may develop significant heart problems.

Respiratory Care:

Some disorders may weaken the respiratory muscles that operate the lungs. These patients may require supplemental oxygen at some point.

Causes of metabolic muscle disease

Glycogen storage disorders

Chronic, progressive weakness with atrophy, cardiomegaly, hepatomegaly, macroglossia, respiratory dysfunction. Symptoms usually present after short period of exercise but may experience a "second wind"

Lipid storage disorders

Muscle weakness and pain, myoglobinuria, exercise intolerance. Symptoms usually present after prolonged period of exercise

Purine recycling disorders

Mitochondrial Enzyme deficiencies

Multisystemic disorders. Very variable. Muscle weakness, exercise intolerance, hearing loss, seizures, ataxia, pigmentary retinopathy, cardiomyopathy

Carbohydrate Processing Disorders

Glycogen Storage Disorders

-

Predominantly muscle GSD II - acid α-glucosidase

- GSD V muscle phosphorylase GSD VII - muscle phosphfoructokinase GSD IXd - muscle phosphorylase b kinase
- <u>Liver and Muscle</u> GSD IIIa - debranching enzyme GSD IXb - phosphorylase b kinase

Predominantly hepatic

- GSD 0 glycogen synthase
- GSD I glucose 6-phosphatatase or transport systems in ER
- GSD IIIb debranching enzyme
- GSD IV branching enzyme
- GSD VI liver phosphorylase
- GSD IXa,c liver phosphorylase b kinase

- Proximal muscle weakness More severe infantile form (cardiomegaly & hypotonia)
- Exertional muscle weakness
- Exertional muscle weakness
 - Exertional muscle weakness and cardiomyopathy

Glycogen storage disease II (Pompe)

Clinical	 Infantile: Hypotonia, macroglossia, hepatomegaly, cardiomegaly and congestive heart failure, FTT. Death within 2 years due to cardiorespiratory failure. Incidence 1:130,000 Juvenile: Weakness, developmental delay, respiratory muscle affected but not cardiac. Adult: Slowly progressive myopathy after 20 years of age, symptoms of respiratory failure, diaphragm involvement leads to sleep apnea. Cardiac is normal. Incidence 1:57,000
Onset	Infantile to adulthood
Defect	Acid α -glucosidase (Acid maltase). Lysosomal enzyme that breaks down glycogen
Inheritance	Autosomal recessive
Laboratory findings	Elevated CK, AST, LDH, particularly the infantile onset. Glycogen storage on histology.

Glycogen storage disease V (McArdle's)

Clinical	Muscle cramps/ pain after brief exercise Resting may lead to a "second wind" Rhabdomyolysis Myoglobinuria – "coke cola" urine Most common GSD- 1:350,000 to 1:100,000. Susceptible to malignant hyperthermia. Phenotype modulated by myoadenylate deaminase gene
Onset	Childhood to adulthood (usually diagnosed in adulthood)
Defect	Muscle glycogen phosphorylase (<i>PYGM</i>). Removes glucose residues from α -(1,4)-linkages in glycogen
Inheritance	Autosomal recessive (R50X mutation accounts for 60% of Caucasian mutations)
Laboratory findings	Raised CK (up to 13,000), even at rest Raised ammonia, potassium and uric acid with exercise No increase in lactate in ischaemic forearm test

Glycogen storage disease III (Cori or Forbes)

Clinical	Type IIIa (85%) liver and muscle involvement Type IIIb (15%) liver only Hepatomegaly Muscle weakness Cardiomyopathy Growth retardation Hypoglycaemic seizures
Onset	Childhood - adulthood
Defect	Defect in amylo-1,6-glucosidase (AGL) gene- Debrancher Removes glucose from α -(1,6)-linkages in glycogen
Inheritance	Autosomal recessive
Laboratory findings	Hypoglycaemia Hyperlipidaemia Amino acids decreased- Ala, Leu, Ile, Val Transaminases Cholesterol CK may be raised

Glycogen storage disease VII (Tarui)

Clinical	Jaundice (due to haemolytic anaemia) Exercise intolerance Muscle weakness Muscle cramps with exertion Occasionally myoglobinuria Similar to McArdles but less likely to experience "second wind" Gout due to uric acid
Onset	Childhood to adulthood
Defect	Phosphofructokinase (Fructose-6-P → Fructose-1,6-P)
Inheritance	Autosomal recessive
Laboratory findings	Myoglobinuria with extreme exertion Increased uric acid, CK, bilirubin, reticulocyte count Increased ammonia but not lactate with ischaemic exercise test

Glycogen phosphorylase b kinase

Hexadecameric enzyme composed of 4 copies of 4 subunits. Activates glycogen phosphorylase in response to neuronal or hormonal stimuli

Subunit	Gene	Expression	Disorder	Inheritance	Affected tissues
α	PHKA1	Muscle	GSD IXd	X-linked	Muscle
	РНКА2	Liver	GSD IXa	X-linked	Liver
β	РНКВ	Muscle and liver	GSD IXb	Autosomal recessive	Muscle and liver
γ	PHKG1	Muscle	-	Autosomal	-
	PHFG2	Liver	GSD IXc	Autosomal recessive	Liver
δ	CALM1	Ubiquitous	-	Autosomal	-

Glycogen storage disease IX (Phosphorylase kinase)

Clinical	Variable, relatively mild Myalgia, cramps and weakness with exercise Myoglobinuria Some forms with hepatomegaly
Onset	Childhood to adolescence
Defect	Glycogen phosphorylase b kinase (activates glycogen phosphorylase).
Inheritance	Autosomal recessive or X-linked
Laboratory findings	Mild elevation of cholesterol, triglycerides, CK. Variable hypoglycaemia

Glycolytic Pathway Disorders

Glycolytic Pathway Disorders

Very rare, often only handful of cases reported.

Usually present childhood to adolescence

Autosomal recessive

Multiple Isoforms of many enzymes

Features may include: Exercise Intolerance Rhabdomyolysis Haemolytic Anaemias Increased CK

Glycolytic Pathway Disorders

Phosphoglycerate Mutase deficiency (GSD X)

Exercise intolerance, cramps, muscle pains. Sometimes myoglobinuria with intense exercise

Lactate Dehydrogenase deficiency (GSD XI)

Exercise intolerance, cramps, pains Rhabdomyolysis/ Myoglobinuria Skin rash

Aldolase deficiency A (GSD XII)

Exercise intolerance and proximal weakness Jaundice + anaemia Episodic myalgias and haemolysis

<u>β Enolase deficiency (GSD XIII)</u> Myalgias

Fatty Acid Oxidation Defects

- •Only defects affecting long chain fatty acid oxidation give muscle disease
- •Paediatric forms usually have severe hypoglycaemia and may also have a hypertrophic cardiomyopathy and liver disease.
- •Adult-onset forms often present without hypoglycaemia or cardiomyopathy. They usually have exercise intolerance and muscle weakness sometimes presenting with myoglobinuria or rhabdomyolysis. Metabolites are often normal even on fasting.

Carnitine and Fatty Acid Oxidation

Carnitine

Essential for the transport of fatty acids into the mitochondrion for oxidation.

Deficient patients present with severe progressive cardiomyopathy and/or recurrent episodes of encephalopathy associated with hypoketotic hypoglycaemia and liver dysfunction.

Skeletal muscle involvement may manifest as motor delay, hypotonia, or proximal limb weakness.

Symptoms may be corrected when carnitine levels are raised with L-carnitine replacement

Primary deficiency

Defect in transport of carnitine into the cell. Can be systemic due to OCTN2 defect or restricted to muscle (? muscle carnitine transporter)

Secondary

Carnitine levels may be reduced by other disorders (fatty acid oxidation, organic acidurias, mitochondrial), malnutrition, renal failure (eg valproate therapy)

OCTN2

Clinical	Cardiomyopathy Hepatomegaly Fatigability/ Muscle weakness Vomiting Abdominal pain Hypoglyaemia Episodic encephalomyopathy
Onset	Infancy to first decade
Defect	Organic Cation Transporter (<i>OCTN2</i>)- Na ²⁺ -dependent carnitine transporter- transports carnitine across cell membranes
Inheritance	Autosomal recessive
Laboratory findings	Plasma carnitine (total and free) low or absent Hyperammonaemia Hypoglycaemia

CACT Deficiency

Clinical	Encephalopathy Cardiomyopathy Muscle weakness Episodic neonatal apnoea
Onset	Neonatal- usually fatal within months
Defect	Carnitine-acylcarnitine translocase (<i>SLC25A20</i>) deficiency. Shuttles substrates between cytosol and intramitochondrial matrix space
Inheritance	Autosomal recessive
Laboratory findings	Hypoketosis (low ketones) Hypoglycaemia Hyperammonaemia Increase in plasma acylcarnitines (C16, C18) and low carnitine

Carnitine Palmitoyltransferase II- Late onset

Clinical	Muscle weakness, stiffness, cramps, pain following prolonged exercise or other stress (heat, cold, illness, fasting) Rhabdomyolysis (most common inherited cause)
Onset	Adolescence or adulthood. Triggered by prolonged exercise or metabolic stresses, illness, cold
Defect	Carnitine palmitoyl transferase II
Inheritance	Autosomal recessive
Laboratory findings	Raised CK after an attack Low free carnitine, normal total Increased phosphates, uric acid, AST. Increased ratio (C16+C18)/C2

Fatty Acid Oxidation Defects

VLCAD Deficiency

Clinical	 i) Severe early onset form with cardiomyopathy and hepatopathy ii) Hepatic phenotype manifests in infancy with recurrent episodes of hypoketotic hyperglycinaemia iii) Milder later onset myopathic form with episodic muscle weakness, myalgia and myoglobinuria with prolonged exercise
Defect	Very long chain Acyl-CoA dehydrogenase
Inheritance	Autosomal recessive
Laboratory findings	Increased acylcarnitines C14, ratio C14:1/C12:1 Dicarboxylic aciduria

Mild mitochondrial Tri-functional protein/ LCHAD

Clinical	 i) Rapidly progressive neonatal onset, early death ii) Infantile onset with hepatic involvement iii) Childhood/ adolescent onset with myopathy and neuropathy Most patients die from heart failure
Defect	α and β subunits of mitochondrial trifunctional proteincatalyses 3 reactions in fatty acid oxidation inc LCHAD
Inheritance	Autosomal recessive
Laboratory findings	Increased acylcarnitines C14- C18

Riboflavin responsive MADD (Glutaric Aciduria 2)

Clinical	Recurrent vomiting Encephalopathy Muscle weakness – proximal limbs, respiratory, dysphagia		
Onset	Infant to adulthood		
Defect	Multiple Acyl CoA Dehydrogenase (Electron Transfer Flavoprotein <i>ETFDH</i>). May be precipitated by poor diet of riboflavin		
Inheritance	Autosomal recessive		
Laboratory findings	Low plasma carnitine Ketosis MADD specific organic acid when symptomatic- Increased lactic, glutaric, ethylmalonic, dicarboxylic acids MADD specific carnitines (C4-C18) even when asymptomatic		

Lipin 1 - a phosphatidate phosphatase in triglyceride and phospholipid synthesis and transcriptional co-activator for fatty acid oxidation

GPAT = glycerol-3-phosphate acyltransferase AGPAT = 1-acylglycerol-3-phosphate acyltransferase DGAT = diacylglycerol acyltransferase

LPIN1 Deficiency

Clinical	Repeated attacks of rhabdomyolysis with myoglobinuria. Often precipitated by febrile illness, anaesthetic or fasting.		
Onset	Early childhood		
Defect	Lipin 1(LPIN1)- a phosphatidate phosphatase in triglyceride and phospholipid synthesis and a transcriptional co-activator for fatty acid oxidation		
Inheritance	Autosomal recessive. A moderately common gene deletion		
Laboratory findings	Increased CK		

The Purine Nucleotide Cycle

Disorders of Purine Nucleotide Metabolism

The purine nucleotide cycle serves to replenish TCA and glycolytic intermediates when energy demand is high.

Reaction occurs mainly during aerobic exercise to replenish ATP.

Supply of aspartate is high and is constantly replenished from blood or internal muscle protein stores.

Myoadenylate Deaminase Deficiency

Clinical	Most patients asymptomatic (1-2% of Europeans are homozygous for a mutation giving <10% activity) Exercise induced myopathy Post-exertional muscle weakness or cramping Prolonged fatigue after exercise		
Onset	Adulthood		
Defect	Myoadenylate deaminase (adenosine monophosphate deaminase)		
Inheritance	Autosomal recessive. Common mutation (can also modulate disease severity in McArdle's disease)		
Laboratory findings	Increased CK. No increase in ammonia in ischaemic forearm test		

Symptoms of Respiratory Chain Disorders

- •Exercise Intolerance
- •Cardiomyopathy
- •Neurological Symptoms
- •Ophthalmoplegia
- •Endocrine Abnormalities
- •Failure to thrive
- •Impaired gut motility
- •Dysmorphic Features

Eyes: Drooping eyelids (ptosis), inability to move eyes (external ophthalmoplegia), blindness (retinitis pigmentosa, optic atrophy), cataracts

Skeletal muscle: Muscle weakness, exercise intolerance. cramps, excretion of muscle protein myoglobin in urine (myoglobinuria)

Digestive tract: Difficulty swallowing, vomiting, feeling of being full, chronic diarrhea, symptoms of intestinal obstruction

Electron Transport Chain

Genetic Classification of Mitochondrial Diseases

Defects of mtDNA

- Mutations in protein synthesis genes
 - mt-tRNA mutations
 - m.3243A>G, m.8344A>G
 - mt-rRNA mutations
 - single, large-scale mtDNA rearrangements
- Mutations in protein-coding genes
 - Multisystemic (NARP/MILS)
 - Tissue-specific (LHON)

Defects of nuclear DNA

- Mutations in respiratory chain subunits
 - Complex I (*NDUFS1*, *NDUFS2* etc..), Complex II (*SDHA*), Complex IV
- Mutations in ancillary proteins
 - C20orf7, NDUFAF2... (Complex I)
 - BCS1L (Complex III)
 - SURF1, SCO2, COX10 (Complex IV)
- Defects of intergenomic signalling
 - ad/ar-PEO and multiple mtDNA deletions
 - POLG, POLG2, PEO1, RRM2B....
 - mtDNA depletion syndromes
 - TK2, DGUOK, MPV17, SUCLA2....
 - Defective mitochondrial translation
- Defects of protein transport
- Defects of the lipid milieu
- Defects of chaperone proteins
- Defects of fusion/fission (OPA1, MFN2)
- Defects of apoptosis

Mutations of mtDNA can cause muscle disease

MELAS: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes

Inheritance pattern: maternal Onset: childhood to early adulthood Features: Recurrent stroke-like episodes, migraine-like headaches, vomiting and seizures. Other symptoms include PEO, general muscle weakness,

exercise intolerance, hearing loss, diabetes and short stature.

MERRF: myoclonus epilepsy with ragged red fibres

Inheritance pattern: maternal Onset: late childhood to adolescence Features: myoclonus (muscle jerks), seizures, ataxia and muscle weakness. Can cause hearing impairment and short stature.

KSS: Kearns-Sayre syndrome

Inheritance pattern: sporadic (deletions in mtDNA)

Onset: before age 20

Features: Defined by PEO and pigmentary retinopathy. Other symptoms include cardiac conduction block, ataxia and proximal muscle weakness.

mtDNA Depletion Syndromes

Characterized by a reduction in mtDNA copy number (15-20% of normal).

May be relatively common neurogenetic disorder of infancy (up to 10% of referrals for weakness, hypotonia and developmental delay)

Phenotypically heterogeneous:

Hepatocerebral form Myopathic form Benign later onset myopathic form Cardiomyopathic form

Muscle weakness, and/or liver failure, and more rarely, brain abnormalities. Lactic acidosis, hypotonia, feeding difficulties, and developmental delays are common; PEO and seizures are less common.

Typically early onset and death

mtDNA Depletion Syndromes

Primarily due to enzymes involved in maintenance of mtDNA copy number, e.g. nucleotide synthesis or mtDNA replication.

Inheritance: Many causes, usually recessive, can be dominant or sporadic.

Biochemical features may include:

Lactic acidosis in more severe cases.
Methylmalonic aciduria in some forms
Serum CK: Mildly, or Prominently elevated to > 1,000
Mitochondrial changes in muscle
Low activity: Complex I, III, IV
Normal activity: Complex II

mtDNA Depletion Syndromes

Disorder	Gene	Product	Function	Phenotype
MTDPS1	ΤΥΜΡ	Thymidine phosphorylase	dNTP pools	MNGIE (mitochondrial neurogastrointestinal encephalomyopathy)
MTDPS2	TK2	Thymidine kinase	dNTP pools	Myopathic
MTDPS3	DGUOK	Deoxyguanosine kinase	dNTP pools	Hepatocerebral
MTDPS4	POLG	Polymerase gamma	mtDNA replication	Hepatocerebral/ Alpers
MTDPS5	SUCLA2	Succinyl-CoA synthase	dNTP pools	Encephalomyopathic with MMA
MTDPS6	MPV17	-	?	Hepatocerebral
MTDPS7	PEO1 (Twinkle)	? DNA Helicase	mtDNA replication	Hepatocerebral
MTDPS8	RRM2B	Ribonucleotide reductase M2B	dNTP pools	Encephalomyopathic with renal tubulopathy
MTDPS9	SUCLG1	Succinate-CoA ligase α subunit	dNTP pools	Fatal infantile lactic acidosis with MMA

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)

Clinical	 PEO Ptosis Limb weakness Gastrointestinal (digestive) problems, including pseudo-obstruction, chronic diarrhoea and abdominal pain. Peripheral neuropathy.
Onset	Childhood to adulthood
Defect	Thymidine phosphorylase (TYMP)
Inheritance	Autosomal recessive
Laboratory findings	Increased serum thymidine and deoxyuridine

Diagnosis of Muscle Disease A multi-disciplinary approach

- Clinical
- Physiology / Electrophysiology (can rule out other disorders)
- Magnetic Resonance Imaging & Spectroscopy
- **Histopathology** (histology & immunocytochemistry)
- **Biochemistry** (metabolites and enzymes)
- **Genetics** (can allow genetic counselling and testing in family members)
- Haematology

Biochemical Abnormalities

- Elevated creatine kinase (intermittent)
- Elevated troponin (Heart or Muscle?)
- Hypoglycaemia
- Abnormal LFTs (sometimes due to muscle damage!)
- Myoglobinuria (cola- coloured urine)
- Increased plasma lactate
- Increased cholesterol & triglycerides
- Increased plasma urate.
- Abnormal acylcarnitines

Abnormalities may be present only during an attack

Forearm exercise test

EMG, ECG, MRS

Glycogenoses

Early exercise intolerance (e.g. cramps/ pain/ myoglobinuria)
CK usually chronically raised
Other first line tests normal
Respiratory muscles may be involved,
e.g. late onset Pompe

Biochemistry

Glucose

Urate

LFTs

Lipids

FBC

Blood

Mutation analysis for GSD V GSD enzymes

Muscle biopsy

Histology and enzyme assay where indicated

Fatty Acid Oxidation defects

Exercise intolerance (e.g. pain/stiffness/ myoglobinuria)- typically on prolonged/ sustained exercise.
Exacerbated by poor food intake/ stress/ illness
•CK usually normal between episodes
•Plasma acylcarnitines may be abnormal
•Urine organic acids may be abnormal

Blood

Common mutation in CPT2

Skin biopsy

Fatty acid oxidation flux assays Specific CPT2 enzyme assay Purine cycle defects

Exercise intolerance (e.g. cramps/pain)
CK usually normal between episodes
Other first line tests normal

Blood

Mutation analysis for myoadenylate deaminase (*AMPD1*)

Muscle biopsy

Need to exclude other causes as this is common

Mitochondrial Respiratory Chain defects

Exercise intolerance, occasionally myoglobinuria
Often more than one organ affected
Normal or raised lactate (plasma and CSF) and CK
May have abnormal organic acids (e.g. TCA intermediates, MMA)
Normal or raised plasma alanine, reflecting lactic acidaemia
May have generalised amino aciduria

Blood

Mutation analysis for common mtDNA mutations

Muscle Biopsy

Respiratory chain complexes assay May include ubiquinone and mtDNA depletion studies Histology – may have ragged red fibres or show decreased staining for some complexes

Ragged Red Fibres

Gomori trichrome stain

Muscle fibres with mitochondrial proliferation stain as red

Cytochrome Oxidase staining

Normal

•Type I fibres stain more darkly than type II.

COX negative muscle fibres may have increased staining of SDH

COX deficient

The Ischaemic Exercise Test

- •Test for glycolytic defects, esp McArdles
- •Restrict blood flow to arm muscle
- •Ask patient to exercise arm
- •Collect blood samples pre and at specified intervals post exercise.
- •Measure lactate, creatine kinase, ammonia:

Normal response: 3-5 fold rise in lactate and ammonia.Glycolytic defect: No increase in lactateMAD defect: No increase in ammoniaFatty Acid defect: Normal response

Treatment of Metabolic Myopathies

- Dietary/ supplements
 - Glucose
 - Medium Chain Triglycerides
 - Carnitine supplements
 - CoQ10
 - Creatine
- Enzyme replacement therapy, e.g. Pompe Disease
- Exercise training to stimulate anaerobic or aerobic pathways

Other factors to note

Lipid lowering drugs (e.g. statins) can induce myopathy/ rhabdomyolysis in some muscle disorders such as MAD, GSD V and CPT2.

Patients with muscle disorders such as McArdles and CPT2 may be at risk of malignant hyperthermia (causes a fast rise in body temperature and severe muscle contractions when the affected person gets general anaesthesia).

The common MAD mutation can worsen the phenotype of some muscle disease patients.

SUMMARY

Muscle function requires ATP.

Sources of ATP are creatine kinase, carbohydrates (aerobic and anaerobic) and fatty acids.

Defects in supply of ATP can cause muscle disease.

Symptoms and onset vary widely and may include: Exercise intolerance (after brief exercise in carbohydrate disorders or sustained exercise in fatty acid disorders) Cramps/ pains

Rhabdomyolysis

Diagnosis requires a multidisciplinary approach: Physiology Biochemistry/ enzymology Histology DNA