Applications of Next Generation DNA Sequencing in Newborn Screening

Anne Goodeve Sheffield Diagnostic Genetics Service 10th July 2014

Outline

Why undertake genetic analysis?

Sanger sequencing

Next generation sequencing

NGS for NBS project plan

Why undertake genetic analysis?

Definitive disease diagnosis/exclusion

Prognosis and management

Determine inheritance and disease risk in family members

Why undertake genetic analysis?

X-linked recessive?

Genetic analysis

Gene of interest

0	20	40	60	80	100	120	140	160	180 kb
1	2 - 4	56	7-9 10 - 13	14		15-22		23-25	26
					_		_		

26 exons and flanking introns ~25bp

Examine sequence for point mutations

Examine sequence for large deletions & duplications

Current Sanger DNA sequencing workflow

Provides information on point mutations

Sanger DNA sequencing

PCR amplification

DNA sequencing

Sanger DNA sequencing

Sanger DNA sequencing

Follow by bioinformatic analysis to determine which sequence variants may be disease associated

Changes in DNA sequencing technology

Sanger sequencing ~3x10⁴ bases

Next generation sequencing ~3x10⁹ bases

Next generation DNA sequencing

Massively parallel DNA sequencing Many patients samples can be analysed together Whole exome/genome analysis possible using larger capacity instruments

Workflows

Genes of interest selected by hybridisation

Sequencing from sheared genomic DNA

Indexing DNA enables association of results with correct patient

Indexed & selected sheared genomic DNA

Sequencing from sheared genomic DNA

Aligned sequencing data

Sequencing from sheared genomic DNA

Sequence coverage of exons for gene of interest

Diagnostic standard sequence coverage \geq 30 x / nucleotide

Alamut v2.2 Interactive Biosoftware

Sequence output format

Variant type	Gene (with HGVS)	1st check Comments
splicing	(NM_000135:exon9:c.710-12A>G,NM_001286167:exon9:c.710-12A>G, NM_001018112:exon9:c.710-12A>G)	SNP on Poly List
splicing	(NM_000135:exon12:c.894-8A>G,NM_001286167:exon12:c.894-8A>G)	SNP on Poly List
splicing	(NM_000135:exon15:c.1226-2A>G,NM_001286167:exon15:c.1226-2A>G)	#:#
splicing	(NM_000135:exon22:c.1900+24A>T,NM_001286167:exon22:c.1900+24A>T)	Novel SNP placed on poly List
splicing	(NM_000135:exon33:c.3067-23G>A,NM_001286167:exon33:c.3067-23G>A)	SNP on Poly List
splicing	(NM_000135:exon33:c.3067-4T>C,NM_001286167:exon33:c.3067-4T>C)	SNP on Poly List
nonsynonymous SNV	:NM_000135:exon33:c.3263C>T:p.S1088F,:NM_001286167:exon33: c.3263C>T:p.S1088F	SNP on Poly List
splicing	(NM_000135:exon34:c.3348+18A>G,NM_001286167:exon34:c.3348+18A>G)	SNP on Poly List
synonymous SNV	:NM_000135:exon37:c.3654A>G:p.P1218P,:NM_001286167:exon37: c.3654A>G:p.P1218P	SNP on Poly List
synonymous SNV	:NM_000135:exon38:c.3807G>C:p.L1269L,:NM_001286167:exon38: c.3807G>C:p.L1269L	SNP on Poly List
nonsynonymous SNV	:NM_000135:exon40:c.3982A>G:p.T1328A,:NM_001286167:exon40: c.3982A>G:p.T1328A	SNP on Poly List

All sequence variants identified listed

Manual check required to determine which if any may be pathogenic

Variant filtering workflow

Large deletion detected by NGS

Exon No.

Next generation sequencers

Illumina MiSeq 2x 250 bp reads 8.5 Gb 35 hours

Roche GS Junior 400 bp reads A 28 Mb 10 hours GS Flex Titanium 700 bp reads 0.7 Gb

Oxford Nanopore MinION Average read 5.4 kb Released 2014 In beta testing

Impact of NGS on genetic testing

Cost

Little impact on single gene disorders

Significantly reduced for large genes and for multigene disorders

Turnaround times

Initially most services 8 - 12 weeks for all genes Potential for significant reduction

Newborn screening in the UK

5 current disorders;

Phenylketonuria (PKU) Congenital hypothyroidism (CHT) Sickle cell disease (SCD) Cystic fibrosis (CF) Medium chain acyl co-A dehydrogenase deficiency (MCADD)

Five pilot NBS disorders

- Maple syrup urine disease (MSUD)
- Homocystinuria (pyridoxine unresponsive) (HCU) Isovaleric acidaemia (IVA)
- Glutaric aciduria type 1 (GA1)
- Long-chain hydroxyl acyl-CoA dehydrogenase deficiency (LCHADD)

Health Innovations Challenge Fund aims

Provide novel diagnostic tests or procedures

Permit timely diagnosis of conditions where no test currently exists

Offer solutions that can be readily integrated into and deployed widely across UK healthcare systems and beyond

Maple syrup urine disease

Day Birth | 0

Dried blood spot

Result MSUD +ve Clinical intervention

5 7

Do no harm

Dietary management Very little natural protein Dietary supplements Clinical monitoring & management Lifelong intervention

Newborn screening

F508del:F508del

F508del:R117H

Genotype:phenotype correlation in Cystic Fibrosis

Aim 1

Expand the utility of adjunct genetic testing

Remove ambiguity

Enhance understanding of genotype : phenotype correlation

For pilot scheme disorders & MCADD

Genotype : phenotype database

 $\begin{array}{cccccc} C & A & C & T & C & A & G & A & G & C \\ C & C & A & C & T & C & A & G & A & G & C \\ \end{array}$

Aim 2

Next generation DNA sequencing from a dried blood spot

For disorders where there is **no biochemical marker suitable for newborn screening**

Aim 2

Utilise healthy control individuals' DNA

Compare DNA extracted from venous blood with DNA extracted from dried blood spots

Aim to obtain same sequence quality from dried blood spot DNA as from venous blood

Use current screened disorders to trial the analysis

Project outcome

- Genotype : phenotype correlation \uparrow
- Ambiguity \downarrow
- Performance [↑] UK and worldwide programmes
- Dried blood spots \rightarrow DNA sequence
- Enhanced sequencing pipeline for other clinical pathways and healthcare systems

Sheffield Diagnostic Genetics Service The team Sheffield Children's NHS Foundation Trust

Ann Dalton Director SDGS Genetics, links to NBS

Anne Goodeve Research Lead Scientist Research strategy

Steve Hannigan CEO Climb Patient advocate

Jim Bonham

National newborn laboratory screening lead

Mark Sharrard Metabolic Physician

Metabolic Physician Metabolic team lead

Diana Johnson Clinical Geneticist Patient & family management

Darren Grafham Head of Lab Services NGS & technical management