

UK Metabolic Biochemistry Network Recommendations for Investigation of Metabolic Causes of Cardiomyopathy

Authors: Ann Bowron and Laura Hinchcliffe

Corresponding author: Ann Bowron (annbowron@nhs.net)

Version: 2

Date: June 2024

Disclaimer: These are laboratory guidelines reflecting current best practice in specialist metabolic laboratories the UK. They are not evidence based but reflect expert opinion. MetBioNet cannot accept any responsibility for use of these guidelines.

Contents

Item	Page
Introduction	3
Investigation of a metabolic cause of cardiomyopathy	4
The effect of ECMO support on metabolic investigations for	8
cardiomyopathy	
References	9
Definitions	9

Tables

Item	Page
Table 1. Inherited metabolic disorders which may be associated with	4
cardiomyopathy, the causative gene(s), supporting clinical signs and	
metabolic investigations which may be helpful in making the diagnosis	
Table 2. A suggested protocol for collection of samples for the	7
investigation of a metabolic cause of cardiomyopathy Investigation of a	
metabolic cause of cardiomyopathy	

Introduction

Cardiomyopathy is defined as a myocardial disorder in which the heart muscle is structurally and functionally abnormal, in the absence of coronary artery disease, hypertension, valvular disease and congenital heart disease sufficient to cause the observed myocardial abnormality [1].

Inborn metabolic diseases (IMD) account for 15 – 20% of all cases of paediatric cardiomyopathy. The following findings should raise the suspicion of an IMD in a patient with cardiomyopathy:

- Family history of cardiomyopathy, sudden or unexplained death;
- Parental consanguinity;
- Multisystemic involvement with unusual or unexplained extracardiac disease including, but not limited to, developmental delay or regression, hypotonia, coarse facial features, macroglossia, feeding difficulties, failure to thrive, recurrent respiratory infections or rhabdomyolysis.
- Episodic metabolic decompensation with signs including, but not limited to, hypoglycaemia, vomiting or lethargy [2,3].

This guideline provides an overview of IMDs reported to cause cardiomyopathy, the affected genes and relevant laboratory investigations (table 1). A suggested panel of laboratory tests useful in the diagnosis of IMD in a patient with cardiomyopathy is provided (table 2). These investigations should normally be performed in conjunction with analysis of relevant gene panels. It is important to liaise with the local laboratory to determine the availability of tests, sample requirements and to discuss priority sample analysis where a treatable IMD is suspected. Information about laboratories providing analysis of specialist metabolic investigation and sample requirements is available on the MetBioNet website: https://metbio.net/resources/assay-directory/

Mitochondrial disease is an important metabolic cause of cardiomyopathy in children and adults. Detailed investigation of mitochondrial disorders is not included in this guideline, but further information is available on the NHS Rare Mitochondrial Disorders Service website: <u>Home - Rare Mitochondrial Disorders Service (mitochondrialdisease.nhs.uk)</u>

Patients with severe cardiomyopathy may require extra-corporeal membrane oxygenation (ECMO). The challenges of IMD investigation in a patient on ECMO are discussed.

Investigation of a metabolic cause of cardiomyopathy

Table 1. Inherited metabolic disorders which may be associated with cardiomyopathy, the causative gene(s), supporting clinical signs and metabolic investigations which may be helpful in making the diagnosis. Abbreviations: ACY, acylcarnitines; AA, amino acids; BS, bloodspot; L, leukocytes; OA, organic acids; P, plasma; S, serum; U, urine. *Plasma acylcarnitines is recommended in the investigation of disorders of long-chain fatty acid oxidation [4].

Disorder	Gene	Supporting clinical signs	Metabolic Investigations		
Fatty acid oxidation and carnitine disorders	Fatty acid oxidation and carnitine disorders				
Carnitine transporter deficiency (primary carnitine deficiency)	SLC22A5	Arrhythmia, heart failure, muscle weakness, hypotonia, fatigue, hypoketotic hypoglycaemia, may be symptomatic	Free and total carnitine (P) ACY (BS, P) Fractional excretion of carnitine (P & U)		
Carnitine-acylcarnitine translocase deficiency (CACTD)	SLC25A20	Arrhythmia, liver disease, hyperammonaemia, hypoketotic hypoglycaemia	ACY (P)*		
Carnitine palmitoyltransferase II deficiency (CPT2D)	CPT2	Arrhythmia, liver disease, muscle weakness, rhabdomyolysis, hyperammonaemia, hypoketotic hypoglycaemia	ACY (P)*		
Very long chain acyl-CoA dehydrogenase deficiency (VLCADD)	ACADVL	Severe form: infant cardiomyopathy, hypoketotic hypoglycaemia Attenuated form: muscle weakness, rhabdomyolysis. May be asymptomatic	ACY (BS, P) OA (U)		
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) / Mitochondrial Trifunctional Protein deficiency	HADHA HADHB	Lactic acidaemia, hypotonia, hypoketotic hypoglycaemia, liver dysfunction, rhabdomyolysis, retinopathy, neurology.	ACY (BS, P) OA (U)		
Multiple acyl-CoA dehydrogenase deficiency (MADD) (glutaric aciduria type II)	ETFA ETFB ETFDH	Severe form: neonatal acidosis, hypotonia, hypoglycaemia, hyperammonaemia, hepatomegaly, facial dysmorphism. Attenuated form: episodic hypoglycaemia, liver dysfunction, progressive encephalopathy epilepsy, myopathy.	ACY (BS, P) OA (U)		
Mitochondrial disorders	•				
Complexes I - V deficiencies	Various	Heterogeneous disorders, any organ may be affected; lactic acidosis	AA (P, U) ACY (BS, P) Lactate (CSF, P) OA (U)		
Barth syndrome	TAZ	Neutropenia, muscle weakness, growth retardation	OA (U) Cardiolipin (BS)		

Disorder	Gene	Supporting clinical signs	Metabolic Investigations
Lysosomal storage disorders			
Glycogen storage disease type II (Pompe disease)	GAA	Hypotonia, progressive respiratory failure, failure to thrive, muscle weakness	α-glucosidase (BS, L)
MPS type I (Hurler)	IDUA	Recurrent upper respiratory tract infections, slow growth, dysmorphism, progressive hepatosplenomegaly, impaired growth	GAG (U) α-L-iduronidase (L)
Fabry disease	GLA (X-linked)	Limb pain, recurrent fever, hypohidrosis, angiokeratomas, angiectasis Cardiomyopathy may develop in adulthood and/or renal failure, stroke, hearing loss	α -galactosidase A (BS, L) (males) Lyso globotriaosylceramide (P ,U) and α -galactosidase A (BS, L) (females) [5]
Glycogen storage disorders			
Glycogen storage disease type IIIa (glycogen debrancher enzyme deficiency)	AGL	Poor growth, delayed motor milestones, ketotic hypoglycaemia, hyperlipidaemia, raised transaminases, progressive myopathy, hepatomegaly.	AA (P) Glycogen debrancher enzyme (L, liver biopsy)
Glycogen storage disease type IV (glycogen brancher enzyme deficiency); neuromuscular form	GBE1	Hypotonia, myopathy, exercise intolerance	Glycogen brancher enzyme (L, liver biopsy, muscle biopsy) Histology (liver biopsy, muscle biopsy)
Muscle glycogen synthesis deficiencies	GYS1 GYG1 PRKAG2	Muscle weakness	Histology (muscle biopsy)
Amino and organic acid disorders			
Propionic aciduria (propionyl-CoA carboxylase deficiency)	PCCA PCCB	Dehydration, hepatomegaly, lethargy, high anion gap metabolic acidosis, hyperammonaemia	AA (P) ACY (BS, P) OA (U)
Methylmalonic aciduria (methylmalonyl-CoA mutase deficiency)	MMUT	Dehydration, hepatomegaly, lethargy, high anion gap metabolic acidosis, hyperammonaemia OA (P) ACY (BS, P) OA (U) Methylmalonic acid (P, U)	
Malonic aciduria (cytosolic malonyl-CoA decarboxylase deficiency)	MLYCD	Developmental delay, epilepsy, recurrent vomiting	ACY (BS, P) OA (U)
Tyrosinemia type 1 (fumarylaceoacetase deficiency)	FAH	Liver failure, vomiting, bleeding, renal tubulopathy OA (U) Succinylacetone (BS, P, U)	

Disorder	Gene	Supporting clinical signs	Metabolic Investigations
2-methyl-3-hydroxybutyric aciduria (HSD10	HSD17B10	Progressing neurodegeneration, epilepsy, blindness,	ACY (BS, P)
disease) D-2-hydroxyglutaric aciduria type 2	IDH2	Intractable epileptic encephalopathy, severe developmental	OA (U) OA (U)
		delay, hypotonia	2-hydroxyglutarate enantiomer analysis
Other metabolic disorders			
Congenital Disorders of Glycosylation (CDG)	Various	Any organ can be affected	Transferrin isoelectric focussing (S)
Hemochromatosis	HFE (type 1, classical)	Iron overload, liver disease, diabetes, hypogonadism, may	Ferritin (S)
	<i>HJV, HAMP</i> (type 2, juvenile)	present in neonatal period	Transferrin saturation (S)
	TFR2 (type 3, severe)		
	SLC40A1 (type 4)		

Table 2. A suggested protocol for collection of samples for the investigation of a metabolic

 cause of cardiomyopathy

Investigation	Sample type*	Notes
Routine laboratory tests		
Blood gases	Arterial blood	
Lactate	Fluoride plasma	
Creatinine, urea, electrolytes, including chloride, bicarbonate and calculation of anion gap	Plasma or serum	
Liver function test	Plasma or serum	
Calcium, magnesium, phosphate	Plasma or serum	
Thyroid function test	Plasma or serum	
Uric acid	Plasma or serum	Raised in some glycogen storage disorders
Cholesterol, triglyceride	Plasma or serum	
FBC and film	EDTA-blood	
Metabolic investigations		
Amino acids	Plasma, urine	Plasma recommended for investigation of amino acid disorder; urine useful in assessment of renal tubular function [6]
Acylcarnitine profile	Blood spots and/or plasma	Include measurement of free carnitine. Plasma acylcarnitines is more sensitive in the detection of disorders of long chain fatty acid oxidation [5]. Analysis of both bloodspot and plasma acylcarnitines may be helpful.
Tubular reabsorption of carnitine	Plasma and urine	Calculated from urine and plasma carnitine results
Organic acids	Urine	Qualitative analysis is sufficient for diagnosis of the majority of organic acid disorders. Quantitation of specific organic acids may be useful e.g. methylmalonic acid.
Intermediary metabolites	Plasma	For majority of disorders most informative
(glucose, lactate, free fatty acids, 3-OH butyrate)		when the patient is hypoglycaemic
Glycosaminoglycans (mucopolysaccharide screen)	Urine	Quantitation and 2D electrophoresis
Lysosomal enzymes: α -glucosidase, α -L-iduronidase and α -galactosidase A	Whole blood	
Lyso globotriaosylceramide	Plasma or urine	Useful in investigation of Fabry disease in females [5]
CSF lactate	CSF	If mitochondrial disorder suspected
Cardiolipin	Blood spots	For investigation of Barth syndrome in males
Transferrin isoelectric focussing	Plasma/serum	Unsuitable in patients less than 3 weeks of age or following recent blood transfusion.
Ferritin, transferrin saturation	Plasma/serum	For investigation of haemochromatosis
Succinylacetone	Blood spots, plasma or urine	May be useful where there is a high index of suspicion for tyrosinaemia type 1.

The effect of ECMO support on metabolic investigations for cardiomyopathy

ECMO is a form of cardiopulmonary life-support where blood is circulated outside the body, oxygenated, then reinfused into the circulation. A portion of the patient's blood volume is replaced with transfused blood. It is used to treat patients with severe cardiac and/or pulmonary dysfunction, often maintaining life while diagnosing or treating the underlying disease. [7]

The effect of ECMO on metabolic investigations is unclear, but there is a risk of false negative results due to dilution of samples with transfused blood. Interpretation of results may be complicated by secondary effects of ECMO including acute inflammatory response, liver failure and bowel ischemia.

Ideally, samples for metabolic investigations should be taken before ECMO is started, but this is rarely practical. To avoid the effects of ECMO on pathognomonic metabolites, samples for investigation of a metabolic cause of cardiomyopathy should be taken at least 72 hours after cessation of ECMO. This is based on guidance from the UK newborn screening programme for IMD screening in patients who have received blood transfusions. [8]

In practice, metabolic investigations may be required urgently in a patient who is severely unwell and may not survive post-ECMO support or in whom a treatable disorder is suspected. Samples should be accepted and analysed with a disclaimer on the report stating that a metabolic disorder cannot be excluded. This balances the risk of missing an acute presentation, while not producing misleading or unreliable results. Where possible, a repeat sample should then be collected when the patient is 72-hours post-ECMO.

References

- [1] Elliott P, Andersson B, Arbustini E et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008 Jan;29(2):270-6
- [2] Byers SL, Ficicioglu C. Infant with cardiomyopathy: When to suspect inborn errors of metabolism? World J Cardiol. 2014 Nov 26;6(11):1149-55
- [3] Ferreira CR, Blau N. Clinical and biochemical footprints of inherited metabolic diseases.
 IV. Metabolic cardiovascular disease. Mol Genet Metab. 2021 Feb;132(2):112-118
- [4] De Sain-van der Velden M, Diekman E, Jans J *et al*. Differences between acylcarnitine profiles in plasma and bloodspots. Mol Genet Metab. 2013; 110:116-121
- [5] Balendran S, Oliva P, Sansen S, *et al*. Diagnostic strategy for females suspected of Fabry disease. *Clin Genet*. 2020; 97: 655–660
- [6] Moat S. MetBioNet guidelines for amino acids analysis <u>https://metbio.net/wp-content/uploads/Guidelines-for-amino-acid-analysis-v2-2023.pdf</u> accessed March 2024
- [7] Makdisi G, Wang IW. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J Thorac Dis. 2015 Jul;7(7):E166-76
- [8] Public Health England. Newborn bloodspot sampling guidelines: quick reference guide. 2021. <u>Newborn blood spot sampling guidelines: quick reference guide - GOV.UK</u> (www.gov.uk) accessed March 2024

Definitions

ECMO Extra-corporeal membrane oxygenation

MetBioNet Metabolic Biochemistry Network

Review Date: June 2027